A Non-Interactive Range Proof with Constant Communication*

Rafik Chaabouni®?, Helger Lipmaa', and Bingsheng Zhang!

! Institute of Computer Science, University of Tartu, Estonia
2 Security and Cryptography Laboratory, EPFL, Switzerland

Abstract. In a range proof, the prover convinces the verifier in zero-knowledge that he has en-
crypted or committed to a value a € [0, H] where H is a public constant. Most of the previous
non-interactive range proofs have been proven secure in the random oracle model, that is, heuristi-
cally. We show that one of the few previous non-interactive range proofs in the common reference
string (CRS) model, proposed by Yuen et al. in COCOON 2009, is insecure. We then construct a
secure non-interactive range proof that works in the CRS model. The new range proof can have
(by different instantiations of the parameters) either very short communication (14 080 bits) and
verifier’s computation (81 pairings), short combined CRS length and communication (log'/2+°® H
group elements), or very efficient prover’s computation (©(log H) exponentiations).

Keywords. NIZK, pairings, progression-free sets, range proof.

1 Introduction

In a range proof, the prover convinces the verifier in zero-knowledge that he has encrypted or committed
to a value a € [0, H], where H is a public constant. Range proofs are needed in a wide variety of crypto-
graphic protocols, like e-voting [CGS97IDJ01] (to show that a ballot corresponds to a valid candidate),
e-auctions [LANO2|, anonymous credentials, e-cash [CHLO5|, or any other protocol that needs for its
correctness that the inputs are from a valid range. Given the need for range proofs in a large variety of
protocols, it is not surprising that there is a large amount of research on this topic.

Most of the existing efficient range proofs fall in one of the next two categories. The first
category uses a classical result of Lagrange that every non-negative integer is a sum of four
squares |[Lip03lGro04)YHM™09]. However, in this case the underlying group has to be of unknown order
which seriously limits the available cryptographic techniques. In particular, all known secure Lagrange’s
theorem based range proofs are based on operations in Z, for a hard-to-factor n. Since to achieve 128-
bit security level, n must be at least 3072 bits long, arithmetic in Z is relatively slow. One also has
to compute the four squares of the Lagrange’s theorem which is inefficient by itself. Furthermore, this
means that it is not known how to instantiate such schemes with bilinear groups. (This is exemplified by
the fact that we break the range proof of [YHM™09] where the Lagrange theorem is used in the bilinear
setting with known group order.)

Due to such considerations, one usually considers the second approach. There, one uses the fact
that a € [0, H], if and only if for some well chosen coefficients G;, there exist b; € [0,u — 1] such
that a = 21;1 G;b;. Here, uw <« H and n is also small. One then proves separately for every b; that
b; € [0,u — 1], and uses additively homomorphic properties of the used commitment scheme to verify
that a = Z?zl Gb;. The goal is to minimize the communication of that type of range proofs.

Clearly, a € [0,2¢ — 1] iff a = Z?Zl 2i=1p; and b; € {0,1}. Then one can prove that a € [0, H] for
arbitrary H by showing that both a and H — a belong to [0, 2l'°82 #I+1 _ 1], Showing that b; € {0,1}
is straightforward, e.g., by using an AND of two X-protocols [CDS94]. This means that one has to
execute two basic range proofs for [0,2¢ — 1]. Lipmaa, Asokan and Niemi showed in [LAN02] that by
choosing the coefficients G; cleverly, one obtains a simpler result that a € [0, H], for any H > 1, iff
a =Y Hos I Gy and b, € {0,1}.

In [CCs08], the authors considered the general case u > 2, following the fact that a € [0,u? — 1] iff
a= Zle u'b; and b; € [0,u—1]. They show that b; € [0,u— 1] by letting the verifier to sign every integer
in [0, — 1], and then letting the prover to prove that he knows the signature on committed b;. One can
show that a € [0, H] for general H by using again an AND of two X-protocols. Nontrivially generaliz-
ing [LANO2] (by using methods from additive combinatorics), Chaabouni, Lipmaa and shelat [CLs10]

* Full preproceedings version, January 27, 2012. Final full version might differ.

showed that there exist (efficiently computable) coefficients G; such that (v — 1)a € (u — 1) - [0, H] iff
a= Zi[flg“((ufl)ﬂﬂﬂ G;b; for some b; € [0, u— 1]. The CLS range proof has communication complexity
of O(log,, H+u) group elements, which obtains minimal value ©(log H/ loglog H) if u ~ log H/ loglog H.
(See [GroTd] for recent related work.)

Usually, it is desired that the range proof is non-interactive. For example, in the e-voting scenario,
range proof is a part of the vote validity proof that is verified by various parties without any active
participation of the voter. Most of the previous non-interactive range proofs first construct a X-protocol
which is then made non-interactive in the random oracle model by using the Fiat-Shamir heuristic. While
the random oracle model allows to construct efficient protocols, it is also known that there exist protocols
that are secure in the random oracle models and insecure in the plain model.

Motivated by this, [CHSO4)YHM™T09/RKP(09] have proposed non-interactive range proofs with-
out random oracles. The range proof from [CHS04] is of mainly theoretical value. The range proof
from [YHMT09| uses Lagrange’s theorem, but we will demonstrate an attack on it. The range proof
from [RKP09] combines the range proof of [CCs08] with the Groth-Sahai non-interactive zero-knowledge
(NIZK) proofs [GS08] and P-signatures. The [RKP09] range proof is not claimed to be zero-knowledge
(only NIWI, that is, non-interactive witness-indistinguishable).

We first show that the protocol from [YHM™09] is insecure. The main idea of the attack comes
from using Pedersen commitments in a group of known order. In this case, using Lagrange’s theorem to
prove that a non-negative number is the sum of four squares fails. We can only conclude that the sum
of four squares is computed modulo the group order. Hence an attacker can prove that any number is
“non-negative” and completely break the protocol in [YHM™09]. See Sect. [4| for more information.

We then construct a new NIZK range proof (for an encrypted a — if one needs a to be committed, one
can use the same cryptosystem as a perfectly binding commitment) that works in the common-reference
string model. We do this by using recent NIZK arguments by Groth and Lipmaa [GrolQ/Lip12]. We also
use the additive combinatorics results from [CLs10], that is, we base a range proof a € [0, H] on the fact
that (u —1)a € (u—1)-[0,H] iff a =Y.~ G;b; and b; € [0,u — 1], where G; are as defined in [CLs10].
However, differently from [CLs10], we prove that b; € [0,u — 1] by proving (by a recursive use of the
method from [LAN02|CLs10]) that b; = Z;L;o G, with b, € [0,1]. Here, n,, := [logy(u—1)]. By using
the commitment scheme of [GrolOlLip12] that enables to succinctly commit to a vector (by,...,b,), and
the Hadamard product argument of [GrolOlLip12], we can do all n, + 1 small range proofs in parallel.
In addition, in Sect. [5| we construct a new non-interactive argument that a knowledge-commited value
is equal to a BBS-encrypted [BBS04] value. (Due to the use of knowledge assumptions, this proof is
computationally more efficient than the one constructed by using Groth-Sahai proofs [GS08].) The new
range proof does not rely on the random oracle model or use any proofs of knowledge of signatures.

The complexity of the new protocol is described in Tbl. [1} Setting u = 2 results in a constant argument
length (but CRS of ©((log H)'*°M)) group elements). By using an efficient variation of Barreto-Naehrig
curves (where the group elements are either 256 or 512 bits), the communication drops to 14 080 bits.
The range proof of [RKP09] does not allow for constant communication. Moreover, if « = 2 then the
communication is even smaller than that of the known range proofs based on the Lagrange’s theorem
like [Lip03]. We note that constant communication is achieved since the new range proof uses permutation
arguments only for permutations that do not depend on the statement. On the other hand, setting u = H
results in summatory CRS and argument length of logl/ o) f , and setting u = 2V'°8H results in
prover’s computational complexity dominated by ©(log H) exponentiations. The previous non-interactive
range proofs did not allow for such a flexibility.

This is the full version that corresponds to the publication at FC 2012.

One can obtain a zap [DNO0IGrol0] (that is, a 2-message public-coin witness-indistinguishable proof)
from the NIZK range proof by first letting the verifier create and send a CRS to the prover, and then
letting the prover to send the range proof to the verifier. This zap works in the standard model (without
needing a CRS since it is generated on run) and has total communication logl/ 2+o(V) H in the case u = H.

2 Preliminaries

Let [L,H] ={L,L+1,...,H —1,H} and [H] = [1, H]. Let S,, be the set of permutations from [n] to
[n]. By a, we denote the vector a = (aq,...,a,). If A is a value, then x < A means that x is set to A.
If A is a set, then x < A means that = is picked uniformly and randomly from A. If y = A*, then let

‘CRS length‘Argumen‘c length‘ Prover comp.‘ Verifier comp.

[RKP09)] o(1) o(h) o(h) o(h)
[RKPG9] | O(:25) O(y) O(17) O (i)
This paper
General n'te 51, +40|0(n’n,)M + O(n'*°Mn,)E| (9n, +81) P
u=2 hi¥e 40 O)M + h'T°E 81 P
u=2"" Bl/2te ~ 5vh + 40 O(K**)M + h'**E|~ (9vh + 81) P
uw=H o) ~ 5h + 40 O(h)E| =~ (9h+81) P

Table 1. Comparison of NIZK arguments for range proof. Here, M/E/P means the number of multiplica-
tions, exponentiations and pairings. Communication is given in group elements. Here, n,, = |log(u —1)],
n =~ log H/logu and € = o(1), and the basis of all logarithms is 2. To fit in page margins, in this table
only, we write h = log, H.

log,, y := z. Let x be the security parameter. We abbreviate probabilistic polynomial-time as PPT. We
say that A = (Aq,...,\p) C Zis an (n, k)-nice tuple, if 0 < A\ < --- < A < -+ < A, = poly(k).

By using notation from additive combinatorics [TV06], if A; and Ay are subsets of some additive
group (Z or Z, within this paper), then

A1+A2:{>\1+)\2:>\16/11/\)\26/12}

is their sum set and
/11—/12:{)\1—)\22)\1 € A1 A Xg 6/12}

is their difference set. If A is a set, then
EA={M+ -+ : N\ €A}

is an iterated sumset, and

k-A={kX: e A}
is a dilation of A. Let

QAA:{)\1+>\2:)\16A/\)\2€A/\)\1¢)\2}§A+A

denote a restricted sumset [TV06].

A set {A1,...,\n} C Z% is progression-free [TVO6], if no three of the numbers are in arithmetic
progression, so that A\; + X\; = 2\, only if i = j = k. Let r3(IN) denote the cardinality of the largest
progression-free set that belongs to [N]. Recently, Elkin [EIk11] showed that

r3(N) = Q((N - logh/* N)/22V/2log2 Ny

It is also known that r3(N) = O(N (loglog N)®/log N) [Sanll]. Thus, the minimal N such that r3(N) = n
is w(n), while according to Elkin, N = n!+e(1),

Fact 1 (Lipmaa [Lip12]) For any fized n > 0, there exists N = n'*°(M) such that [N] contains a
progression-free subset A of odd integers of cardinality n.

Bilinear Groups. Let Gpp(1%) be a bilinear group generator that outputs a description of a bilinear
group gk := (p,G1, G2, Gr, €) < Gup(17) such that p is a xk-bit prime, Gy, G2 and G are multiplicative
cyclic groups of order p, é : G; X Go — Gr is a bilinear map (pairing) such that Va,b € Z, t € {1,2} and
gt € Gy, (g%, 95) = é(g1,92). If g; generates G, for t € {1,2}, then é(gy, g2) generates Gr. Moreover, it
is efficient to decide the membership in Gy, G2 and G, group operations and the pairing é are efficiently
computable, generators are efficiently sampleable, and the descriptions of the groups and group elements
each are O(k) bit long. One can implement an optimal (asymmetric) Ate pairing [HSV06] over a subclass
of Barreto-Naehrig curves [BNOSIPSNBI11] very efficiently. In that case, at security level of 128-bits, an
element of G1/Gy/Gr can be represented in respectively 256/512/3072 bits.

A bilinear group generator Gy, is DLIN (decisional linear) secure [BBS04] in group Gy, for t € {1, 2},
if for all non-uniform PPT adversaries A, the next probability is negligible in k:

gk Gop(17), (f, 1) = (G)?, gk < Gop(17), (f,h) (G})?,
Pr | (o,7) Z; : —Pr|(o,71,2) Zg :
Algks foh, f7, 07, g7) =1 Algks f,h, f7,h7,97) =1

Let A be an (n, k)-nice tuple for some n = poly(x). We say that a bilinear group generator Gy, is
A-PSDL secure, if for any non-uniform PPT adversary A,

gk = (p,G17G2,GT,é) < pr(l’i),gl — Gl \ {1},92 — GQ \ {1},(E — Zp :
Algk; (gfsaggs)se{o}uA) =T

is negligible in x. Let A be an (n, k)-nice tuple. According to [Lip12], any successful generic adversary
for A-PSDL requires time £2(1/p/\,) where p is the group order and A, is the largest element of A.

The soundness of NIZK arguments (for example, an argument that a computationally binding com-
mitment scheme commits to 0) seems to be an unfalsifiable assumption in general. We will use a weaker
version of soundness in the case of subarguments, but in the case of the range proof, we will prove sound-
ness. Similarly to [GrolOLip12], we will base the soundness of that argument on an explicit knowledge
assumption.

For two algorithms A and X 4, we write (y;2) < (A||X4)(x) if A on input x outputs y, and X 4
on the same input (including the random tape of A) outputs z. Let A be an (n, k)-nice tuple for some
n = poly(x). Consider ¢ € {1,2}. The bilinear group generator Gy, is A-PKE secure in group G, if for
any non-uniform PPT adversary A there exists a non-uniform PPT extractor X 4,

gk = (p,G1,G2,Gr,é) + Gop(1%), g1 < G \ {1}, (&, 2) + Z2, crs + (gki (g7 . 97)seforun),

Pr (e,e(ag)seqopon) + (AlIX) (ers) se=c*nez [[o0
se{o}uA

is negligible in k. Groth [Grol0] proved that the [n]-PKE assumption holds in the generic group model;
his proof can be modified to the general case.

BBS Cryptosystem. A public-key cryptosystem (Gpke, Enc, Enc) is a triple of efficient algorithms, key
generation, encryption, and decryption. It is required that for any (sk,pk) < Gpkc(1%) and any valid
m and randomizer r, one has Decg(Encok(m; 7)) = m. A cryptosystem is IND-CPA secure, if for any
(sk, pk) <= Gpkc(17) and any two messages mg and mq, the distributions Encpk(mo; -) and Encpr(ma; -) are
computationally indistinguishable. In the lifted BBS cryptosystem [BBS04] (in group Gi), the system
parameters are equal to (gk; g1), where gk <— Gy (1) and g1 + G1\ {1}. The secret key sk is (sky, ska)

(Z3)?, the public key pk is (f,h) < (gi/Skl,g}/SkQ). One encrypts a € Z, as

5ncpk(Ckl; a; Tfa Th) — (097 Cf7 Ch) = (g;f‘i""h‘i’a’ frf) hTh) B
where (ry,rp) Zg. One decrypts (cq, ¢, cpn) by returning the discrete logarithm of cg/(c;kchkQ). The
BBS cryptosystem is IND-CPA secure under the DLIN assumption.

Commitment Schemes in the CRS Model. A (batch) commitment scheme (Geom, Com) in a bilinear
group consists of two PPT algorithms: a randomized CRS generation algorithm Geom, and a randomized
commitment algorithm Com. Here, G!,..(1%,n), t € {1,2}, produces a CRS ck;, and Com*(ck; a;r), with
a = (ay,...,a,), outputs a commitment value A in G; (or G? for b > 1). We assume that a commitment
Com'(cks; a;r) is opened by revealing (a, 7).

A commitment scheme (Geom,Com) is computationally binding in group Gy, if for every non-uniform
PPT adversary A and positive integer n = poly(k), the probability

cky < ggom(lman)v (a17r1, a2,7‘2) — A(th) :
T
(a1,m1) # (az,m2) A Com'(cks; ay;ry) = Com’(cks; ag;ms)

is negligible in k. A commitment scheme (Geom,Com) is perfectly hiding in group Gy, if for any positive
integer n = poly (k) and ck; € G,,,(17,n) and any two messages a1, az, the distributions Com®(cks; ay;-)
and Com?(ck;; az;-) are equal.

A trapdoor commitment scheme has three additional efficient algorithms: (a) A trapdoor CRS gener-
ation algorithm inputs ¢, n and 1" and outputs a CRS ck™ (that has the same distribution as G% (1%, n))
and a trapdoor td, (b) a randomized trapdoor commitment that takes ck™ and a randomizer r as inputs
and outputs the value Com®(ck™;0;7), and (c) a trapdoor opening algorithm that takes ck®, td, @ and r
as an input and outputs an 7’ such that Com?(ck®; 0;r) = Com?(ck™; a;7’).

An extractable commitment scheme [Di02JACP09] is a commitment scheme (Geom,Com) with an
additional extractor (Extri,Extrp) such that: Extr!(1%) creates a CRS ck® (indistinguishable from the
real CRS ck) and a trapdoor td, and Extra(ck™,td; A) returns (a;r) such that A = Com(ck;a;r), given
that A is a valid commitment. An extractable commitment scheme can only be computationally hiding.

We use the knowledge commitment scheme, defined in [Lip12], as follows.

CRS generation: Let A be a (n, k)-nice tuple with n = poly(k). Define A\g = 0. Given a bilinear group
generator Gpp, set gk = (p,G1,G2,Gr,€) < Gup(1¥). Let g1 € Gy and g2 € Gg be generators,
and choose random &,z < Z,. Fix t € {1,2}. The CRS is ck; < (gk; (9¢,7;» 9¢,x,)ic{0,...,n}), Where

g N AN
Gt =i, and g, = gi"
Commitment: To commit to @ = (ay,...,a,) € Z,, one chooses a random r <— Zj,, and computes

n n
Com*(cki;a;r) == (g7 - [T ors, a1 - [T o) -
=1 =1

Let t = 1. Fix a commitment key cky that in particular specifies ga, 2 € G2. A commitment (A4, /1) €
G? is walid, if é(A, §2) = é(A, g2). The case of t = 2 is dual.

According to [Lip12|, the knowledge commitment scheme is statistically hiding in group G;, and com-
putationally binding in group G; under the A-PSDL assumption in group Gy;. If the A-PKE assumption
holds in group Gy, then for any non-uniform PPT algorithm 4, that outputs some valid knowledge com-
mitments, there exists a non-uniform PPT extractor X 4 that, given as an input the input of A together
with A’s random coins, extracts the contents of these commitments. The knowledge commitment scheme
is also trapdoor, with the trapdoor being td = x: after trapdoor-committing A «— Com?(ck;0;7) = g for
1 4 Zp, the committer can open it to (a;r — Y1 | a;z™) for any a.

Non-Interactive Zero-Knowledge. Let R = {(C,w)} be an efficiently computable binary relation
such that |w| = poly(|C|). Here, C is a statement, and w is a witness. Let £ = {C : Jw, (C,w) € R} be an
NP-language. Let n = |C| be a fixed input length. For fixed n, we have a relation R,, and a language £L,,.
A non-interactive argument for R consists of the next PPT algorithms: a common reference string (CRS)
generator Ggs, a prover P, and a verifier V. For crs < G.(1%,n), P(crs; C,w) produces an argument .
The verifier V(crs; C, 1)) outputs either 1 (accept) or 0 (reject).

A non-interactive argument (Ggs, P, V) is perfectly complete, if for all values n = poly(k), all crs
Gers(1%,n) and all (C,w) € Ry, V(crs; C,P(crs; C,w)) = 1. A non-interactive argument (Ggs, P, V) is
computationally (adaptively) sound, if for all non-uniform PPT adversaries A and all n = poly(k), the
probability

Prlers < Gos(17, 1), (C,) « Alcers) : C & LA V(ers; C,) = 1]
is negligible in .

A non-interactive argument (Ges, P, V) is perfectly witness-indistinguishable, if (given that there
are several possible witnesses) it is impossible to tell which witness the prover used. That is, for all
n = poly(k), if crs € Ges(1%,n) and ((C,wp), (C,wy)) € RZ, then the distributions P(crs; C,wp) and
P(crs; Cywy) are equal. A non-interactive argument (Ges, P, V) is perfectly zero-knowledge, if there ex-
ists a polynomial-time simulator § = (S1,Ss), such that for all stateful interactive non-uniform PPT
adversaries A and n = poly(k),

crs < Gas(1%,n), (C,w) + Alcrs), (crs,td) < S1(1%,n), (C,w) « A(crs),
Pr | ¢ « P(crs; C,w) : =Pr | ¢ + Saocrs,C,td) :
(Cow) e Ry ANAW) =1 (Cw) e Ry NA(W) =1

Here, td is the simulation trapdoor.

System parameters: Let n = poly(k). Let A = {\; : i € [n]} be a progression-free set of odd integers, such
that A\;+1 > \; > 0. Denote Ap := 0. Let A= {0fuAdu2”A.

CRS generation G.s(1%): Let gk := (p,G1,G2,Gr,é) + Gup(17). Let &,z + Zp. Let g1 + Gi1 \ {1} and
g2 < G2\ {1}. Denote g + gf[and Geo g?@f for t € {1,2} and £ € {0} UA. Let D « [[", g2, The
CRS is crs <+ (gk; (gie, §1e)eeqoyua, (920, §2e) g 4> D). Let cky < (gk; (g1¢, G1e)eeroyua)-

Common inputs: (A,A,B,B,BQ,C, C’), where (A,fl) — Coml(a(l;a; Ta), (B,B) — Coml(c/I(l;b; ry), By
g5° - TT, gg'fAi, (C, C’) — Coml(cAkl;c; re), s.b. a;b; = ¢; for i € [n].

Argument generation Py (crs; (4, A, B, B, B, C,C), (a,74,b, 15, ¢,7c)): Let 11 (0) := {(i,7) : i,j € [n] A j #
iAXi+A; = L}. For £ € 27 A, the prover sets pe < 3, jyer, (o) (aibj—ci). Hesets ¢ < g5 ™[]}, g;i\l’f”b“i*”.
HZQQAA95227 and 1& — g 1T, ggfff”b“f” . HZQAAQ%. He sends 9 « (w,lﬁ) € G2 to the verifier as
the argument.

Verification Vx (crs; (A, A, B, B, By, C,C),¢*): accept iff é(A, Ba)/é(C, D) = é(g1,1) and é(g1,¥) = é(g1,).

Protocol 1: Hadamard product argument [(4, A)] o [(B, B, B)] = [(C, ()] from [Lipi2)]

3 Groth-Lipmaa Arguments

In this section, we describe two of our building-blocks, an Hadamard product argument and a (known)
permutation argument. In both cases, Groth [GrolO] proposed efficient (weakly) sound and non-
interactive witness-indistinguishable (NIWI) arguments that were further refined by Lipmaa [Lip12],
who used the theory of progression-free sets to optimize Groth’s arguments. Since [Lip12] is very new,
we will give here a full description of Lipmaa’s NIWI arguments. We refer to [Lip12] (and its full ver-
sion, |Lip11]) for details.

3.1 Hadamard Product Argument

Assume that (Geom, Com) is the knowledge commitment scheme. Recall that an Hadamard product of two
vectors a and b is equal to their entrywise product vector ¢, that is, ¢; = a;-b; for j € [n]. In an Hadamard
product argument, the prover aims to convince the verifier that for given three commitments (A,A),
(B, B) and (C,C), he knows how to open them as (A4, A) = Com!(ck;a;r,), (B, B) = Com!(ck;b;ry),
and (C, é’) = Com’ (ck; ¢; 1), such that ¢; = a; - b; for j € [n]. Prot. has a full description of Lipmaa’s
Hadamard product argument [(A, A)] o [(B, B, By)] = [(C, C)], where By is the equivalent of B in Go:
By < g5 - TIiZ, 95, -

Fact 2 (Lipmaa [Lip12]) The above Hadamard product argument is perfectly complete and perfectly
witness-indistinguishable. If the bilinear group generator Gy is A-PSDL secure, then a non-uniform PPT
adversary has negligible chance of outputting inp™ <+ (A,A,B,B,BQ,C, C’) and an accepting argument
P* (1/),1[)) together with opening witness w* < (a,rq,b,7y,¢,7¢, (f) e 1) such that

S

— (A, A) = Coml(cAkl;a;ra),
— (B, B) = Com!(cky; b; 1),
- By :A ggb ’ H?:l /g\g;’

— (C,C) = Com*(cky;c;7e),

p sed for® Y.ciqfiz®
- @) = (gt gy,
— and for some i € [n], a;b; # ¢;.

For the product argument to be useful in more complex arguments, we must also assume that the
verifier there additionally verifies that é(A, §2) = é(A, g2), é(B, §2) = é(B, g2), é(g1, B2) = é(B, g2), and

é(C, g2) = é(C, g2). Note that (f4)sci is the opening of (v, 1)).

Fact 3 (Lipmaa [Lip12]) For any n > 0 and y = n't°M) let A C [y] be a progression-free set of
odd integers as guaranteed by Fact |1, such that |A] = n. The communication (argument size) of the
Hadamard product argument is 2 elements from Go. The prover’s computational complexity is ©(n?)
scalar multiplications in Z, and ntto() exponentiations in Go. The verifier’s computational complexity
is dominated by 5 bilinear pairings. The CRS consists of n'T°M) group elements.

System parameters: Same as in Prot. [T} but let
/I =AU {2)% —)\j}i,ke[n] u2"AU ({2)% + N\ —)‘j}i,j,k:e[n]/\i;éj \ 2. A) .

CRS generation Ges(17): Let gk := (p,G1,G2,Gr,é) < Gup(17). Let &, &,z < Zp. Let g1 < G1 \ {1} and
g2 + Ga\ {1}. Let g « g and G « g¢* for t € {1,2}. Denote g + gi , ge < 47, and Gee g§ for
t € {1,2} and £ € {0} U A. Let (D, D) < (I, 92.5;> 1/ §2,»;). The CRS is

crs < (gk; (91e, g1e, §re)eeqoyua, (92¢) eeoyuis (920) e 4> (G20) e 45 Dy D)

Let cky (gk; (gw,éu)ee{o}uzx) cky + (gk; (91, J1e)eetoyua)-
Common inputs: (A A, B,B,B ,0), where g9 € Sy, (A, fl) — Coml(c~k1;a; Ta), (B,B’) — Coml(cAkl;b;), and
(B, B) + Com®(cky; by), s.t. b; = = ag(j) for j € [n].
Argument generation Pperm(crs; (4, 4, B, B, B, o), (a, ra,b b))t
1. Let (T*,T*,Tg) (I~ ng“A(g 1(4).0) I, d ATA(Q (1),0) I lg2TA<9 (i)vg)).
2. Let ro= < Zp, (A*, A¥) ~ Coml(ckhTA(A Y1),0) - a1,...,Ta(e71(n), 0) - an;rqe). Create an argument
P for [(A, A)] o [(T", 17, T3)] = [(A7, A")].
3. Let A, := 274U ({20 + A — A; 16,5 € [Ai £ 3\ 2-4) C{=An+1,...,3\.}.
4. For £ € A, I1(¢) as in Prot. |1} and I,(¢) := {(4,§) : 4,5 € [n] A j # TA2X,0) + A5 F Ai +2X,3) A 2X(5) +

)\i -)\j = 6}7 set
Mot Z a; — Z b .

(i,9)€11(£) (i,5)€I2(£)
5. Let (EQ7EQ) — (H;L:I 92,2X 53y~ Alvnf 1 g2, 2>\g() >\)
6. Let 12 < D"a - E; "™ Tleex, ghet e« D'a By Tlee, Gu’s

Send P — (A*, A* P8, w") € G? x G4 to the verifier as the argument.

Verification Vperm(crs; (4, A, B, B, B, o), ¥**™): Let E, and (T*,T* ,T3) be computed as in Pperm. If 9™
verifies, é(A*, D)/é(B, E,) = e(g1 1[19) E(A*,§2) = e(A ,92), and é(g1,1°) = é(g1,1?), then Vperm accepts.
Otherwise, Vperm rejects.

Protocol 2: Permutation argument o([(4, A)]) = [(B, B)] from [Lip12]

Finally, as noted in [Lip12], if @, b and ¢ are Boolean vectors then the prover’s computational complexity
is O(n?) scalar additions in Z, and n'*t°() exponentiations in G.

3.2 Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for given permutation ¢ € S,
and two commitments (A, A) and (B, B), he knows how to open them as (4, A) = Com'(ck; a;r,) and
(B,B) = Com'(ck; b; 1), such that b; = a,(;) for j € [n]. We denote this non-interactive argument by
o([(A4,A)]) = [(B, B, B)], where B, is again the equivalent of B in Gs. As in the case of the Hadamard
product argument, we describe a version of the argument due to |[Lip12]. See Prot.

Let Ta(i, 0) := [{j € [n] : 2Xo0) + Aj = 2X5(5) + Ai}|, clearly Tx(i, 0) > 1. One proves that a,q) = b;
for i € [n] by using a subargument that shows that for separately committed a;, az(i) = T(i,0) - b; for
i € [n]. Showing in addition that a} = Tx(0~'(i), 0) - a; (which is equivalent to ayy = Talis 0) - apey),
one obtains that a,;) = b; for i € [n]. We only consider the case where g is fixed and thus the element
E, can be put to the CRS. We also use the fact that AU A = {0} U A, where A is defined in Prot.

We denote the full permutation argument by o([(4, A)]) = [(B, B, B)].

Fact 4 (Lipmaa [Lip12]) The above permutation argument is perfectly complete and perfectly witness-
indistinguishable. If the bilinear group generator Gpp is A-PSDL secure, then a mon-uniform PPT ad-
versary has negligible chance of outputting inpPe™ <+ (A,A,B,B,B,Q) and an accepting argument
PYPerm ¢ (A*,A*,wx,zﬁx,wg,zzg) together with a witness

WP = (@70, 0,70, 0%, Tars (Fs) seir (Flon))ecd) s

such that

,) Coml(ckha),

) Com (ckl,b Tp),

)) = Com (Ck17b Tb)
A* A*) = Com (ckl,a iTax),
S Z/A)><> = (g3 veitixon ggzze/if(,x,m)

p Z yf,gy DY ~f’g-

v, 40) = (g et lon, i o),
— a7 = Talo~ (), 0) - as (for i € [n]); and
— for some i € [n], ayuy # bi.

For the permutation argument to be useful in more complex arguments, we must also assume that the
verifier there verifies that (A, go) = é(A4, §2), é(B, g2) = é(B, §2), and é(B, g2) = é(B, §2)-

Fact 5 (Lipmaa [Lip12]) The permutation argument has a common reference string of length plito®)
and communication of 4 group elements. The prover’s computational complexity is ©(n?) scalar additions
in Z, and n' oM exponentiations in G. The verifier’s computational complexity is dominated by 12
bilinear pairings.

4 Breaking the COCOON 2009 Range Proof

In [YHM™09], the authors proposed a non-interactive range proof. In what follows, we show that their
argument is not secure.

Their goal is to prove that a committed secret w is in some range [a,b]. To do so they prove that
both w —a and b— w are non-negative by making use of Lagrange theorem stating that any non-negative
integer can be decomposed as the sum of four squares. Hence,

4 4
w—a:waj and b—w:ngj , (1)
j=1 j=1

for some w;;. The range proof of [YHM™(09] is based on (symmetric) bilinear groups of composite order,

that is, on bilinear groups (n, G, G, é), where n = pg. To commit to a message w, the committer picks

a randonﬂ r € Zq and computes C' = g”u", where g is a random generator of G (of order n), and u is a

random generator of subgroup G4 (of order ¢). Given C, w is uniquely determined in Z,, as C? = ¢g™9.
In their range proof, the prover finds the witnesses w;; in Eq. and outputs a proof

Y = ({C1j, C2tjepas Cuws 1, 92)
where

Cp=g¥u G ,

Cij =g"u"7 € Gforie 2] and j € [4] ,
o1 =g "1 Siaarwy X e G
g =g t? Sioirawey I € G

The verifier checks if

4
w 7g He Cl]701] (Ua@l)
7j=1

and

4
» H e(Czj, Caj) = é(u, p2) .

Now assume that a malicious prover P* plcks an integer w* € {0,...,p — 1} \ [a,b]. We have that
either w* — a or b — w* is negative as an integer. Suppose b — w* < 0, then P* chooses {w;j}je[ﬂ

! In [YHM™09)|, the scheme uses r € Z,, to facilitate their security proof (crs switching).

such that n + (b — w*) = 2?21(“);]')2’ sets Oy ¢ g u™, Oy < g¥2u", @1 as above, and @a

grw+2'2?:1 T2 w3 251755 Let u = g® for some a. It is easy to see that the second verification equation
still holds:

4
4 « N2
H 02] , 02] (g g)(—b)+arwy+325_ (w3;+ars;)
Jj=1

:é(g, g)('W*7b)+0”’w+2?:1(w;j)2+231 Lo TQJ +2 ZJ 10T2;W3;

4 * 42
:é(gyg)ou(rw-i-QEj:l rojwa; a3 Ta) é(

u, p2) -
We have successfully constructed a polynomial time adversary who can always break the scheme. There-
fore, the NIZK range proof in [YHM™09| is not sound.

5 New Subargument for Correct Encryption

In the new range proof of Sect. @ we need a subargument that if (A., A.) is a knowledge-commitment
of some a (with n = 1 and some randomness r), and (Ay, Ay, Ap) is a BBS ciphertext of some a’, then
a=a’. That is, A. = g7g7 ,, and (Ag, Ay, Ap) = (g{f—‘_rh—m, fr, k") for randomness (ry,ry,) and public
key (f,h). (The generator g », is required in Sect. [6})

We will construct this argument in the current section, by combining ideas from [GSO§]
and [GrolOJLipI2]. Intuitively, for every multi-exponentiation h{*...h%m = t that we want to prove,
we write down a verification equation é(hy,Com(aq))----- é(hm,Com(an,)) = é(¥, g2)é(t,Com(1)), where
1 “compensates” for the fact that Com(a,,) are probabilistic commitments. In addition, we use knowl-
edge commitments (though for small values 0 or 1 of n) so that one can extract all committed values.
Since the argument uses three committed values (a, 7y and rp) and three equations, according to Fig. 6
of [GS07] (the full version of [GS08]), the corresponding pure Groth-Sahai argument will have length
of 15 group elements. Our combination argument has the same length, but is computationally more
efficient.

System parameters: An (n, k)-nice tuple A = (A1,...,\,).
Common reference string generation G.(1%): Set

gk - (paGbGQyGt;)<_ gbp() .
Generate random oy, ap, an, @, g)c, T < Zyp. Let gy <= Gy \ {1} and g2 <= G2 \ {1}. Denote g x,

A1 A1 o « o [_ & = 5 _ & = 5 o
91 5 920 93 5 91 <9175 92 <= 9275 G1 = 9T Gian 9T G2 < 99, G2 < 9o a,s Glg/c

ogje(1—a?) Jer(1—z1)
lg y 92,9/c <~ G2 5’

common reference string is

’ gl,f — gtllfv §2,f — g;f7 él,h — gfhv and §2,h — ggh The

Crs <— (gk;glvgl,)\p92a92,>\17.§17§27glagl7kpg27g2,)\17§1,g/c7§2,g/ca§1,f7§2,f7§17h7§2,h) .
A third party also creates sk := (sky,sky) <= (Z5)?, and sets

pk = (f,h, f.h) « (g™ g1/ 513 g1k
Common inputs: (crs; pk, Ay, A, Ap, A.), where pk = (f,h,f, h),
(Aga Afa Ah) = (ng+T}l+a’ f”’f) hrh))

and A, = g7f+7“gf A
Argument P(crs; (A, Ay, An, Ac), (a,rp, 1)) let Ap < _Tthgl Ay

(Ag, Ag, Ap) = (g1 e by
o ° — R . 7R _re
Agje g(ll,g/c' Let Ry, Ry < Zyp. Let (Cf,Cy) < (9o fgg,fxlvgz fg;fAl),

(Ch, éh) (95 hg;h)\lagg 92)\1) € G% :

Let
g +Rs+Rp, or+Ry+Rp
(wg’@[’g)“(g; ! }MGI ! })EG%

(5, 40p) = (F7, f77) € GE, (o, dn) 4 (W, hir) € G,
Send 1/)ce — (AgaAfaAha c7¢ga 1,[19, Cf7 Cfa djfa djf; Cha Chvwhvwhv g/c) to the verifier.

Verification V(crs; (A, Ag, An, Ac),1°¢): Verify that e(f,gg) = &é(f,02.5) (h g2) = é(h,g2n),
e(Ag,92) = é({lg,gz)a e(Ay,gor) = é(flfagz)a e(An,g2,n) = é({lh,92) e(Ac,g2) = é(Acag2)a
é(wgm&Q) = é(¢g792)7 é(¢f7§2,f) = é(¢f792)7 é(wh».&lh) = é(whngQ) é(g 7Cf) = é(glacf)7

é(gla Ch) = é(gla C’h)7 and é(Ag/Aca.éQ,g/c) = é("ig/caQQ)'
Verify that é(fﬂ Cf) = é(l/Jf,QQ) : é(Af792,)\1)a é(h7ch) = é(wh»gQ) . é(Ahng,)\l)7 and é(gthCh) =
é(ngc_lng) : é(Aga 92,/\1)~

Theorem 1. The argument of this subsection is a perfectly argument that for some a,rf,vy € Zp,
A = gigt,, and (Ag, Ap, Ap) = (gretrata fre pre). If the {\1}-PSDL assumption and the {\}-
PKE assumption (in both Gy and Go) hold, then this argument is computationally sound. If the DLIN
assumption holds in group Gi, then this argument is computationally zero-knowledge.

Clearly, this argument has CRS of length ©(1), its argument consists of 13 elements of Gy and 2 ele-
ments of Go. The prover’s computational complexity is dominated by 20 exponentiations. The verifier’s
computational complexity is dominated by 33 pairings.

6 New Range Proof

In the next range proof, the prover has an encrypted a € Z,, and he aims to convince the verifier that
a € [0, H]. We will use the lifted BBS cryptosystem (Gpkc, Enc, Dec) that can be thought of as a perfectly
binding commitment scheme if decryption is not necessary. Since we are interested in obtaining a sublinear
argument, we will also use the (computationally binding) knowledge commitment scheme (Geom,Com).
We use the following result that was stated for v = 2 in [LAN02] and for general v in [CLs10].

Fact 6 Let H > 0 and u > 1. Let ¢(u, H) < log, (H + 1) be defined as in [CLsi0]. Then a € [0, H| if
and only if for some b; € [0,u — 1],

l(u,(u—1)H)

(’LL — l)a = Z Glbz 5

i=1

where G; € 7 are values defined in [CLsi0]. That is, (u —1) - [0, H] = Y20V 0,0 —1). In
particular, [0, H] = Z}fgz A |(H +2%)/2¢F1] - [0,1].

The precise values of ¢(u, H) and G; are not important in the next description. It suffices to know that
they can be efficiently evaluated. We note that

Gy = [/ 4 [(Hy 4 (S Hy mod (u—1)) + 1)/u] |
3=0

where H = Y 2'H; |[CLs10].

The basic idea of the next range proof is as follows. Choose a v > 1, and let n = f(u, (u — 1)H).
According to Fact |§|, a € [H] iff for G; computed as in Fact @, one has (u —1)a =", G;b; for some
b; € [u — 1]. The prover shows by using a parallel version of range proof from [LAN02] that for i € [n],
b; € [0,u—1]. The latter is done by writing b; as b; = E}:gﬂu_m G0, (by again using Fact@ and then
showing that b}; € [0, 1] by using an Hadamard product arguments from [Lip12]. This will be achieved
with commitments on (b4, ...,b},) for j € [[logy(u —1)]].

The prover then commits to the vector (c1,...,cy), where ¢; = Z?:j G;b;, and shows that the values
c; are correctly computed by using a small constant number of Hadamard product and permutation

arguments. More precisely, he commits to (G1b1,...,Gnby,) (and shows this has been done correctly),

10

then to (c2,...,¢n,c1) (and shows this was done correctly), then to (cz,...,¢,,0) (and shows this was
done correctly), and then shows that

(cl,...7cn) = (Glbl,...,ann)+(02,...,cn,0) .

Thus, the verifier is convinced that ¢; = >i; G;b;. But then by Fact |§|, 1=y i, Gib € (u—1)-[H],
and thus the prover has to show, by using a single product argument, that (A%~!, Ag—l) commits to
(¢1,0,...,0) and that (A4, Ay, Ap) is a lifted BBS encryption of A with randomizer (ry,7,) where
r=7f+Th-

As in [LipI2], in a few cases, instead of computing two different commitments Comt(a(t;a;r) =
(9¢-11af,- 9011 67%,) and Com'(cky;a;r) = (9¢- 119, 90 11G7%,), we compute a composed commitment

Com'(ck;a;r) = (g7 - [[ot a1 [a0 ar - [0 -

The common input to both parties is equal to a BBS encryption (Ag, Af, Ay) of a, accompanied by a
knowledge component A such that (A, A) is at the same time a knowledge commitment to a.

Theorem 2. Let u > 1. Let H = poly(x) and n = €(u, (u — 1)H) where { is defined as in Fact[f Let
A = {Ai}iem) be an (n, k)-nice tuple. Denote Ao := 0. Let A:={0}UAU2"A, and A as in Sect. .
Let rot € S, be a permutation, where rot(i) =i — 1 if i > 1, and rot(1) = n. Define G; as in Fact |6
The argument in Prot. @ is perfectly complete. If Gpp is A-PKE secure and DLIN secure in G1, then the
argument in Prot. @ is computationally zero-knowledge. If Gyp is A-PSDL secure and A-PKE secure in
both G1 and Ga, then the argument in Prot.[3 is computationally sound.

This argument is computationally zero-knowledge because (4., ¢.) that was provided by a prover and not
generated during the argument. To achieve zero-knowledge, one must be able to open (A, ¢) given only
the CRS trapdoor. That is, one has to use an extractable commitment scheme [Di 02JACPQ9]. Tt is easy
to see that the knowledge commitment scheme is extractable, however, extractability is only achieved
under the PKE assumption. The use of a cryptosystem also makes achieving perfect zero-knowledge
impossible.

Theorem 3. Let u > 1. Let A be as in Fact[]] and let n = {(u, (u — 1)H) < [log,((u — 1)H + 1)] ~
log H/logu + 1, where £(-,-) is defined as in Fact[6l Let n, = [logy(u —1)]. Assume that we use the
Hadamard product argument and the permutation argument from Sect.[3 The range proof in Prot.[3 has
a length-n'*T°W) common reference string, communication of 2n, + 25 elements from G and 3n, + 15
elements from G, the prover’s computational complexity of ©(nn,) scalar multiplications in Z, and
nitoMn, exponentiations in Gi or Go. The verifier’s computational complexity is dominated by 9n,, + 81
pairings.

The communication complexity is minimized when n, (and thus) is as small as possible, that is, u = 2.
Then n, = |log, 1] = 0. In this case the communication consists of 12 elements from G, and 13 elements
from Gs. The same choice u = 2 is also optimal for verifier’s computational complexity (81 pairings). As
noted before, at the security level of 2!2%, elements of G; can be represented in 256 bits, and elements of
G2 in 512 bits. Thus, at this security level, if © = 2 then the communication is 25-256 +25-512 = 14 080
bits, that is, only about 4 to 5 times longer than the current recommended length of a 2'28-secure RSA
modulus. Therefore, the communication of the new range proof is even smaller than that of Lagrange
theorem based arguments like [Lip03].

The optimal prover’s computational complexity is achieved when the number of exponentiations,
oW . n, = (log H/logu)'t°M - |log,(u — 1) |, is minimized. This happens if u = H, then the prover’s
computation is dominated by ©(log H) scalar multiplications and exponentiations. Moreover, in this case
the CRS length n't°() is constant. Finally, we might want the summatory length of the CRS and the
communication to be minimal, that is, n*+o() 4 O(n,). Considering n = log,, H and n, = log, u, we get
that the sum is (log H/ log u)HO(l) + O(log u). One can approximately minimize the latter by choosing
u = eV"H_ Then the summatory length is 10g1/2+0(1) H. (In this case, it would make sense to change
the role of groups G1 and G2 to get better efficiency.) The efficiency of the new range proof in all three
cases is given in Tbl.

11

System parameters: H,G;,n,u, n, := [log,(u —1)|, and G; = | (u+27) /29T

Common reference string generation Gcs(1%): Set gk := (p,G1,G2,Gr,€é) < Gpp(17). Generate random

a, a, ozq,ozf,ah,a Og/e, T < Zp. Let g1 < G1 \ {1} and g2 < G2\ {1}. Denote gis + ¢¥ , Gis gt ,

o(1—a?1)

gtS <~ gt) gl — gl ; 92 — 92 ; g1 917 gin, gl,)\lv g2 < 927 g2, n g2,>\17 gl,g/c 0 e/ ;
(1—z?1)

o a c ° ° (o3 o o
G2.g/c < 95" g a1’ Gey g2y i = gy and Ga 4= g5 Set D+ [12, g1, Bror <
HZ 192,20 013y = Ai s and Emt — Erot The common reference string is

Crs <— (gk7 (91,87 §1,57 gl,s)se{O}UAv 92, (QQvS)se/T’ (92,57 ngS)SE/X’ D» Eroh Erot) .

Set cki < (gk; (g1s, G1s, J1s)se{o}ua), cky + (gk; (915, G15)se{oyua) and cky « (gk; (915, G1s)seqoyua)- The
prover creates a secret key sk := (ski,skz) < Z2, and sets pk + (f, h, f h) (gi/Skl g}/Skzgi/;kl,g}{;kz).
Here, Encpk(m; (rf,71)) == (g’f"“h+m o R, A
Common inputs: (pk, Ay, As, Ap, Ac, A.), where (A, Ap,An) = (g7, f74,h") and (4., A.) =
gIglll,)\lmg;gi)\l)’ for r = rf +Th. .
Argument P(crs; (pk, Ag, Ay, An, Ac, Ac), (a,7f,78)): The prover does the following:
1. Compute (b1,...,bn) € Zy such that (u — 1)a =" | Gib;.
2. For i € [n] do: compute (b, ..., b, ;) € Zy* " such that b; = =372 G’ - b,
3. For j € [0,n,] do:
— Let rj = Zyp, (B}, B}) + Coml(a(l;bgl,...,b;-n;rj), Bj, + g, -1 1923;
— Create an argument (},4}) for [(B}, B})] o [(B}, B}, Biy)] = (B}, B))].
4. For i € [n], let ¢; < > p_, Grbg.
5. Set r0,71,72 <+ Zp, (B, BY) « Coml(cAklgGlbl, o, Gnba), (C,C,C) + Com®(cki;e;rh), and
(Crot, Crot, Crot) <= Com*(cki;ca, ..., Cno1,Cn,c1;7h).
6. Create an argument (WX, for [[(H?;O(B;)GIJ,H;ZO(A;)G;)] o
ﬂ(coml(&lle," ano) H:L 192G;\)]] = [[(BJr BT)H
7. Create an argument (A*, A*,z/JQ ,";/12 LRt r°t) for rot([(C, C’)]]) = [(Crot, ,Qt,é'mt)]]
8. Create an argument (¢,) for [[(C’rot,Crot)]] o [(Com®(cky;1 ,1,0;0), T1 5 g2n)] =
[(c/BT,C/BM)].
9. Create an argument (4,97 for [(C, C)] o [(Com!(Sku; 1,0, ., 0,0;0), g2,2,)] = [(A2~1, A1),
10. Create an argument ¥5° that A. commits to the same value that (A4, As, Aj) encrypts.
11. Send

’L/} ((B B B]27w]71/}])J€[0 Ny (BT BT) (07070)7(Crotyérotyérot)7(wlxqu)lx)v
() 7¢2 7¢2) I'Ot 1/’5“) (w& 7¢3)7 (%fﬂﬁzf),wge)

to V.
Verification V(crs; (pk, Ag, Af,Ah,AC,AC)7 ¥): V does the following.
1. For j € [0,n,] do:
(a) Check that é(B},g2) = é(g1, Bjs) and é(Bj, g2) = (B}, g2).
(b) Verify (¢}, @ZA)é) for inputs as specified above.
2. For K € {Ac, BY,C, Crot}: check that é(K, §2) = é(K, g2).
For K € {C, Crot}: check that (K, g2) = e(K g2)-
4. Verify the arguments (1) 71/)1), (A%, A*7¢2 ,1/12 RS '°t) (3 71&3), (1/}271&5)7 £¢ for inputs as specified
above.

@

Protocol 3: The new range proof for some u > 1.

12

Acknowledgments. The first author was supported by European Social Fund’s Doctoral Studies and
Internationalization Programme DoRa. The second and the third authors were supported by Estonian
Science Foundation, grant #8058, and Furopean Union through the European Regional Development

Fund.

References

ACPO09.

BBS04.

BNO5.

CCs08.

CDS94.

CGS97.

CHLO5.

CHS04.

CLs10.

Di 02.

DJo1.

DNOO.

Elk11.

Gro04.

Grol0.

Groll.

GS07.

GS08.

Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth Projective Hashing for Condition-
ally Extractable Commitments. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
671-689, Santa Barbara, California, USA, August 16-20, 2009. Springer, Heidelberg. [2] [f]

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures. In Matthew K. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41-55, Santa Barbara, USA, August 15-19, 2004.
Springer, Heidelberg.

Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In Bart
Preneel and Stafford E. Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319-331, Kingston,
ON, Canada, August 11-12, 2005. Springer, Heidelberg. [2]

Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient Protocols for Set Membership and Range
Proofs. In Josef Pieprzyk, editor, ASTACRYPT 2008, volume 5350 of LNCS, pages 234-252, Mel-
bourne, Australia, December 7-11, 2008. Springer, Heidelberg.

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. In Yvo G. Desmedt, editor, CRYPTO 1994, volume 839 of LNCS,
pages 174-187, Santa Barbara, USA, August 21-25 1994. Springer, Heidelberg.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. In Walter Fumy, editor, FEUROCRYPT 1997, volume 1233 of LNCS,
pages 103-118, Konstanz, Germany, 11-15 May 1997. Springer, Heidelberg. [I]

Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-Cash. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 302-321, Aarhus, Denmark, May 22-26,
2005. Springer, Heidelberg.

Giovanni Di Crescenzo, Javier Herranz, and German Saez. Reducing Server Trust in Private Proxy
Auctions. In TrustBus 2004, volume 3184 of LNCS, pages 80-89, Zaragoza, Spain, August 30 —
September 1, 2004. Springer, Heidelberg.

Rafik Chaabouni, Helger Lipmaa, and abhi shelat. Additive Combinatorics and Discrete Logarithm
Based Range Protocols. In Ron Steinfeld and Philip Hawkes, editors, ACISP 2010, volume 6168 of
LNCS, pages 336-351, Sydney, Australia, July 5-7, 2010. Springer, Heidelberg. [T} [6] [6]

Giovanni Di Crescenzo. Equivocable And Extractable Commitment Schemes. In Stelvio Cimato,
Clemente Galdi, and Giuseppe Persiano, editors, Security in Communication Networks, 3rd Interna-
tional Conference, SCN 2002, volume 2576 of LNCS, pages 74-87, Amalfi, Italy, September 11-13,
2002. Springer Verlag. [2] [6]

Ivan Damgard and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages
119-136, Cheju Island, Korea, February 13-15, 2001. Springer, Heidelberg. [I]

Cynthia Dwork and Moni Naor. Zaps and Their Applications. In FOCS 2000, pages 283—293, Redondo
Beach, California, USA, November 12-14, 2000. IEEE Computer Society Press.

Michael Elkin. An Improved Construction of Progression-Free Sets. Israeli Journal of Mathematics,
184:93-128, 2011. @

Jens Groth. Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis, University of Arhus,
Denmark, October 2004. [I]

Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In Masayuki Abe,
editor, ASTACRYPT 2010, volume 6477 of LNCS, pages 321-340, Singapore, December 5-9 2010.
Springer, Heidelberg.

Jens Groth. Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Commitments. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASTACRYPT 2011, volume 7073 of LNCS, pages 431-448,
Seoul, South Korea, December 4-8, 2011. Springer, Heidelberg.

Jens Groth and Amit Sahai. Efficient Non-Interactive Proof Systems for Bilinear Groups. Technical
Report 2007/155, International Association for Cryptologic Research, April 27, 2007. Available at
http://eprint.iacr.org/2007/155 (version 20100222:192509), retrieved in December, 2011.

Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups. In Nigel
Smart, editor, FEUROCRYPT 2008, volume 4965 of LNCS, pages 415-432, Istanbul, Turkey, April 13—
17, 2008. Springer, Heidelberg.

13

HSVO06.

LANO2.

Lip03.

Lip11.

Lip12.

PSNBI11.

RKPO09.

Sanll.
TVO06.

YHM09.

Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta Pairing Revisited. IEEE Transactions
on Information Theory, 52(10):4595-4602, 2006.

Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without Threshold Trust. In
Matt Blaze, editor, FC 2002, volume 2357 of LNCS, pages 87-101, Southhampton Beach, Bermuda,
March 11-14, 2002. Springer-Verlag. @ |§|

Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In Chi Sung
Laih, editor, ASTACRYPT 2003, volume 2894 of LNCS, pages 398-415, Taipei, Taiwan, November
30-December 4, 2003. Springer, Heidelberg. [T} [f]

Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge
Arguments. Technical Report 2011/009, International Association for Cryptologic Research, Jan-
uary 5, 2011. Available at http://eprint.iacr.org/2011/009.

Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge
Arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 7—?, Taormina, Italy,
March 18-21, 2012. Springer, Heidelberg. [I [I} 2] 2 [I B} 21 B 2} B2 A B Bl 6l

C. C. F. Pereira Geovandro, Marcos A. Simplicio Jr., Michael Naehrig, and Paulo S. L. M. Barreto. A
Family of Implementation-Friendly BN Elliptic Curves. Journal of Systems and Software, 84(8):1319—
1326, 2011. 2]

Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally Composable Adaptive Priced Obliv-
ious Transfer. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671 of LNCS,
pages 231-247, Palo Alto, CA, USA, August 12-14, 2009. Springer, Heidelberg.

Tom Sanders. On Roth’s Theorem on Progressions. Annals of Mathematics, 174(1):619-636, July
2011.

Terrence Tao and Van Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2006. [2]

Tsz Hon Yuen, Qiong Huang, Yi Mu, Willy Susilo, Duncan S. Wong, and Guomin Yang. Efficient
Non-interactive Range Proof. In Hung Q. Ngo, editor, COCOON 2009, volume 5609 of LNCS, pages
138-147, Niagara Falls, NY, USA, July 13-15, 2009. Springer, Heidelberg. [T} [4}

A Proof of Thm. 1

Proof. PERFECT COMPLETENESS: correctness verifications are straightforward. Clearly,

é(f, Cf) = é(fa gffg;f)\l) = é(fv gQRf) : é(f, g;f)\l) = é(fRfaQQ) : é(frfag2,)\1) - é(i/)f,gg) : é(AfagZ)\l) .

AnalOgOHSIy’ é(ha Ch) = é(whmgQ) ! é(Ah’QQ,Al)' FinallY7

~ _ ~ ~ ~ Rf{+R ~
e(Act, ', g2) - (g1, CrCh) =e(gi gt 5, - 91 192) - €91, 957 ") - elgr, 957,

—T—Rf—Rh T‘f—l-T’h)
~ —R:—R ~s Rf+Rp ~ +rn
elgin, 91 T g2) - e(g T g2) - e(g T gan)

R T S TETR
=é(g5, g2.0,) - €(g1 " gany) = é(gy T

) 92,)\1) .

COMPUTATIONAL SOUNDNESS: By the {\; }-PKE assumption in G; /G2, one can open the next values:

= gigtll Alvg{g?)\1))

))

=((91910,)" 9% 470) >

Ry Ty _Ry_ry
927,092 gz,Al))

r R r
h h “Ath 5 h
92,092 92,,\1))

Since Ac = gig7 s Ag = gf” and Ay/A; = (glgif\l)“l, we have that g‘f” = g{’Lalg‘f;\‘ll,. Thus, if
a # a', one can compute 2 < (a” —r — a’)/(a — a’), and from this compute x and thus break the
{A1}-PSDL assumption. (To verify whether x is the correct root, one can check that gfkl = ¢g1.5,-) Thus

a=a', and thus also @’ =7 +a and 4, = g; .

R !’ " X R R R
Due to Cy = g, fg;f)\l, Vr =gy, Ap = f75 and é(f,Cf) = é(tbs, ga) - €(Af, ga.n,), we have

R R 1 R 1 .)\
e(f, 927 g50\,) = e(gy? g2)e(f"7 .95)

for unknown z. Taking the discrete logarithm of the both sides of the last equation, we get that R /sky +
r}xh/skl =7} + rpa [sky, or (rp — r})x/\l = Ry — 1% - sky. Thus, if ry # 7', then we can compute
2™ and find from this z, and thus break the {\;}-PSDL assumption. Thus, r§= r} and therefore also
Cy= gffg;f)\l. Moreover, ¢y = gqlnf = flr,

Analogously, we get that r, = 7}, and therefore Cj = gf”g{h')\l and 1y, = hftr.

R R v o
Due to Cr = g7 g5y ,» Cn = g1 91"\, Y9 = 91°s Ae = 9197y, Ag = g1 and &(g1,C;Cy) =

E(Pg AT, ga) - €(Ag, g2,), we have

é(r+Rp+Rp+(rp4rp)z ! —rrail

91,95) =e(91" 91" 915, 92) - €(g1 ", g2,) = €9y ,92)

for unknown z. Taking the discrete logarithm of both sides of the last equation, we get r + Ry + Ry +
(ry + rp)z™ = ! — 4 ez’ Again, if T§ 4+ ry # 7, then one can compute 2z and thus also z. Thus,
r = rs + 13, and thus also r=r+ Ry + Ry,. This means that A, = g;errh’gi)\l and (Af,Ag,Ah) =
(ng+7‘h+a,frf’hrh).

COMPUTATIONAL ZERO-KNOWLEDGE: we construct the next simulator (S1,82). 81 creates a CRS
according to the protocol together with a trapdoor td = (o, af, ap, &, g ¢,). On input td, Sy creates
2, z2n < Zp. He then sets Cy < g57, by fzf/AjéM, Ch + g5, by, + hz’L/A”fLAl, and ¢y gffﬂh/AzM.
He creates the knowledge elements (ﬁg,ﬁf,/ih,/ic,@/?g, C'f,@Zf, Ch, zZth, /ig/c) by using the trapdoor. For

o

example, A/, < (Ag/A;)%/¢. One can now check that the verification succeeds. For example,

(s, 92)e(Ag, gan,) =E(f7 JAL " g2) - 6(Af, gan,) = (77, g2) JE(AE ", g2)e(A, g2.n,)
:é(fzfaQQ) = é(f? Cf))

and finally,

(A, Y, g2) - €lg1, CrCh) = élgy " AT Auygo) - élg1, 95 T7) = 6(Agy g0, -

If the DLIN assumption is true, then (A,, Af, Ap) is indistinguishable from an encryption of 0 € [0, H],
and thus the whole argument is computationally knowledge. O

B Proof of Thm. 2

Proof. PERFECT COMPLETENESS: Recall that in the case of the product arguments, the inputs of P are
(4, A, B, B,Bs,C, C’) Within this proof we say that (B, B, Bs) (assuming Bs is correctly defined, that
is, é(B, g2) = é(g1, B2)) commits to the same values as (B, B).
The pairing verifications (for example, that é(K, g2) = é(K, g2)) hold by construction of the protocol.
Since (B, Bé) commits to (b, ...,b},) for binary b/, then the argument (¢}, ’(/AJ;) verifies.
Note that (H;ZO(B;-)G/J', H?;O(B’;-)G}) commits to (b, ..., by). Thus argument (), 1)) verifies. Since
(Crot, Crot) commits to a rotation of (C, (), then (A*, A* X, S, et et) verifies. Since (Crot, Crot)

commits to (0,¢1,...,¢,_1) and (C/Bt,C/B) commits to
(Cl — G1b1,62 — ngg, ceeyCp — ann) = (O,Cl, e ,Cn_l) 5

then (¥,) verifies. Finally, since (u — 1)a = Y7, Gib; and ¢, = Y7, Gib;, then () ,9))) verifies.

15

COMPUTATIONAL SOUNDNESS: let 4 be a non-uniform PPT adversary who creates a statement
(pk, Ag, A¢, Ap, Ac, Ac) and an accepting range proof ¥. By the DLIN assumption, the BBS cryptosystem
is IND-CPA secure, and thus the adversary obtains no information from (A4, As, Ap). By the A-PKE
assumption, there exists a non-uniform PPT extractor X 4 that, running on the same inputs and seeing
A’s random tape, extracts the following openings:

(Ae, Ac) =Com*(cki; a;r) |

=Com"

cky; by r;)for j € [0,m,]
Com! cAkl;bT;ré) ,

(

(
1(A

(

(B}, B))
(B',BY)

(3):Com Ckl;C;T’i),
(Crot, Crot) =Com™ (ck1; Cror; 75)
Fixi,s fixt,s
w1aw1):ngél)H JAED N

sed scA
(A*, A¥) =Com1(cAk1;a*'ra),

1/)2 an Hggéxzs) H fixz, 5) ’

sed sed
’
rot rot f(t2,5) ~f(t2,5)
H g rof Hg2sro s) ,

sed s€A

(xs s) Af(xs 9)

(3, 95) H 92s H 925 ;and

seA seA

_ (><4 s) Af(><4 a)
(i) =(] Lo T 2t
seA sed

It will also create the openings that correspond to 1g°. If any of the openings fails, we are done. Since
A-PSDL assumption is supposed to hold, all the following is true. (If it is not true, one can efficiently
test it, and thus we have broken the PSDL assumption.)

Since é(B},g2) = é(g1, Bjp) for j € [0,n,], then (Bj1, Bj1, Bj2) commits to b’. Therefore, due to
the A-PSDL assumption, the fact that the adversary knows the openings of (B;,B;) and (3,1%),
and the last statement of Fact |2, since (wg,z/};) verifies, then b7, € {0,1} for all j € [0,n,] and

€ [1,n]. Thus, by Fact b= (b,....bn) = (52 Gy, 2000 GibY,) € [0,u — 1]™, and thus
(IT}o(B)) ,H"“ (B /)5) commits to b with b; € [0,u — 1].

Due to the A-PSDL assumption, the fact that the adversary knows the openings of (Bj, B;), (Bf, BY)
and (wl 07, and the last statement of Fact [2| since (¢),4))) verifies, then bl = G;b;. Due to
the A-PSDL assumptlon the fact that the adversary knows the opemngs of (C C’) (Crot,érot) and
(A%, A*7§/12 7@/12 , T 5°t), and the last statement of Fact |2} since (A*, A*,¢2 ,1/12 PRt 5‘“) verifies,
then crot1 = ¢y and crot i1 =¢; for i > 1.

Due to the A-PSDL assumption, the fact that the adversary knows the openings of (Crots Crot) (C, C‘),
(Bt, BY), and (Y3 71113), and the last statement of Fact [2 since (93 ,7,[13) verifies, then ¢; — G1by = 0
and ¢; — Gib; = crot;i = ci—1 for @ > 1. Therefore, ¢; = Glbl, ca = Gaby + G1b1, and by induction
¢i = > j—y Gib; for i > 1. In particular, ¢, = 37| Gib; for b; € [0,u — 1].

Due to the A-PSDL assumption, the fact that the adversary knows the openings of (C,0), (A, Ay),
and (¢, 1)), and the last statement, of Fact since (1,9} verifies, then (4., A.) = (9197 2,5 9197 5,)
commits to (a,0,...,0) such that (v — 1)a = Y. | G;b; for b; € [0,u — 1], and therefore by Fact @
a € [0, H].

Due to the {A; }-PSDL assumption and since ¥g° verifies, then (Ay, Ay, Ay) encrypts a € [0, H].

COMPUTATIONAL ZERO-KNOWLEDGE: we construct the following simulator & = (S1,S2). First, S;
creates a correctly formed common reference string together with a simulation trapdoor td = (&, &, .. ., x).
After that, the prover creates a statement inp” := (pk, Ag, A¢, Ap, Ae, Ac) and sends it to the simulator.
Second, Sy(crs; inp”;td) uses a knowledge extractor to extract (a,r) from the prover’s random coins and

16

(A, Ac) Since we are only interested in the case of a honest prover, we have that a = (a,0,...,0) with
a € [0, H]. Thus, using the fact that the knowledge commitment scheme is also trapdoor, the simulator
computes 7 < az* +r; clearly A = g7 . Since both 7 and r” are uniformly random, 7’ does not leak any
information on the prover’s input. After that, the simulator creates all commitments (B}, B;, %2)je(0,m]5
(Bf, BT), (C, C, C) and (Chet, Chrot, Crot) as in the argument, but replacing a with 0 and r with 7. (Note
that all the mentioned commitments just commit to 0.) Thus, the simulator can simulate all product and
permutation arguments and the argument of Sect. [5| Clearly, this simulated argument *"™ is perfectly
indistinguishable from the real argument 1. O

C Proof of Thm. [3

Proof. The communication complexity: n, + 1 tuples (Bj, B}, B;»Q, ;) (each has 2 elements of G; and 3
elements of G3), and then 8 extra elements from G;, 3 Hadamard product arguments (2 elements from
G each), 1 permutation argument (2 elements from Gy and 4 elements from Gs), and argument ¢ (13
elements from G; and 2 elements from Gs). In total, thus 2(n, + 1) + 8 + 2 + 13 = 2n,, + 25 elements
from Gy and 3(n, +1)+3-2+4+ 2 = 3n, + 15 elements from Go.

The prover’s computational complexity is dominated by (n, + 1) + 3 = n, + 4 Hadamard product
arguments and 1 permutation argument (©(n?) scalar multiplications and bilinear-group nlte) ex-
ponentiations each), that is in total @(n? - n,) = O(n? - logu) scalar multiplications and n'*°M) logu
exponentiations.

The verifier’s computational complexity is dominated by verifying n, + 4 Hadamard product argu-
ments (5 pairings each), 1 permutation argument (12 pairings), and the argument ¥°¢ (33 pairings). In
addition, the verifier performs 2 - (2(n, + 1) + 6) = 4n, + 16 pairings. The total number of pairings is
thus 9n, + 81. The rest follows. a

17

	A Non-Interactive Range Proof with Constant Communication

