
Cryptographic Rule-Based Trading (Short Paper)

Christopher Thorpe and Steven R. Willis
{cat,swillis}@generalcryptography.com

General Cryptography

Abstract. We present an interesting new protocol where participants in a se-
curities exchange may submit cryptographically encrypted rules directly to an
exchange rather than orders to buy and sell. We define this in two parts: a secure,
partially trusted computer that runs the exchange and proves its actions correct,
and a set of participants who define the rules and submit them to the exchange.
At each “tick” of the exchange, market prices are taken from the national mar-
ket system, all submitted rules are evaluated, with any resulting trades executed
at market prices. Cryptography reduces information leakage, masks participants’
intent, and provides for verification. A cryptographic audit trail proves that all
transactions executed by the exchange are according to a set of published ex-
change rules and the encrypted trading rules.

1 Introduction

In [19, 18] Thorpe and Parkes introduced cryptographic exchanges for individual secu-
rities and baskets of securities, motivated by increasing transparency without the un-
favorable price impact and possible exploitation of information associated with full
disclosure. The cryptographic securities exchanges they describe require market partic-
ipants to submit specific intended trades to a marketplace. Our protocol is designed to
enable a marketplace in which participants send firm commitments to rules that trigger
trades rather than the trades themselves.

Our work is motivated by growing demand for algorithmic trading, including in the
context of alternative trading systems (ATSs) and electronic clearing networks (ECNs)
for block trading. Many of these systems, known as “dark pools”, keep trade infor-
mation secret, and instead introduce counterparties interested in trading with one an-
other. They typically trade large positions that would result in significant price impact
if traded on a primary securities exchange like the NASDAQ or New York Stock Ex-
change. Some of these systems also offer participants the ability to indicate interest in a
transaction for a defined quantity of one particular security. This limitation implies that
orders are nonbinding, which means that sometimes trades don’t work out and parties
feel like they disclosed information unnecessarily.

Disclosure typically has a cost; academic and applied finance accepts that fore-
knowledge of an large trade can be exploited for financial gain [11, 9]. On the other
hand, binding orders at a fixed price result in the free trading option problem: a limit
order grants other market participants an option to buy or sell securities at that price,
for free.



We illustrate the problem with an example: Say Alice places an order in a dark pool
to buy 100,000 shares of XYZ Corp. at $9.00. The stock is currently trading at $10.00.
Then Alice goes away for lunch and returns to discover that XYZ’s CFO resigned due to
accounting irregularities and the stock immediately dropped 25% to $8.00 with trading
volume at several times the 90-day average. Since she was literally out to lunch and
unable to cancel her buy order, Alice’s order would have been immediately filled as the
price dropped, as her free trading option was exercised by someone in the market. (She
loses $100,000.) Harris’ Trading & Exchanges [8] offers a detailed description of the
free trading option.

Our exchange allows Alice to submit a rule-based trade rather than a simple limit
order, still in the context of a dark pool where her intentions can remain secret from
other market participants. The exchange executes (or does not execute) every order
based on its rules, and proves that every action was based on the committed rules,
rather than requiring that participants simply trust its activities. This, in the context
of hardware and network security, can reduce the risk of unauthorized disclosure or
trading.

These are not theoretical risks: the SEC has already settled with a major dark pool
operator and two of its executives after alleging it was facilitating client trades using a
subsidiary without disclosing that conflict, and leaking information to internal staff [3].

1.1 Properties of our Exchange

We describe a small example language with which various rules may be expressed and
represented in an encrypted form that does not reveal unnecessary information about
the rules.

Such an exchange where the rules are submitted secretly but uses no cryptography
has the following positive (+) and negative (−) characteristics:

+ Rules can avoid the free trading option problem.
+ Network latency between the participants and the exchange is no longer as valu-

able, because it is only relevant when the rules change. In fact, the exchange could
require that a participant’s rules can only change when the exchange is not operat-
ing.

− Everyone must trust that the exchange is operating fairly.
− Participants may be unwilling to reveal their rules, which prevents transparency or

external verification.

By adding cryptography, we obtain the following characteristics:

+ The exchange can issue a trustworthy audit trail based on all market participants’
encrypted algorithms.

+ The audit trail does not have to reveal anything except the encrypted algorithms
and the trades they took.

+ The only trust is that the exchange is secure, and information is not leaking. The
audit trail ensures correct outcomes.



+ Cryptography adds complexity and time in fast-moving markets. We separate real-
time decisionmaking from asynchronous correctness proofs so that the exchange
may run the rules as efficiently as possible, while still proving its activities correct
after the fact.

There are clearly dangers in such a system, though these exist already in modern
algorithmic trading. For example, algorithmic trading is likely to have led to a “flash
crash” where computers programmed to exit in panic sold significant holdings all at
once [20, 10]. Algorithms could create circular trading patterns that simply trade with
each other absent other information entering the market. Other risks include the secu-
rity of the computer operating the exchange and its cryptographic keys, the particular
implementation of the underlying cryptographic scheme, and other standard security
risks associated with an applied cryptographic system.

Finally, although a collection of algorithms can lead to unintended consequences, a
model in which the exchange hosts the algorithms may actually help to alleviate mar-
ket risk.1 Armed with the suite of algorithms defining how its participants behave, the
exchange could run tests on the entire market to identify areas of instability without
revealing any particular participant’s algorithms. The ability to simulate a cohort of
trading agents in various market conditions could eventually lead to better risk manage-
ment for participating institutions and improve overall market stability.

In fact, U.S. senators who regulated and investigated financial markets have argued
for the necessity of better audit trails and protections against future flash crashes [10].
Practical technologies may offer important solutions to these very real problems.

1.2 Preliminaries

For convenience and brevity, we assume a set of primitive operations for provably cor-
rect secure computation based on homomorphic cryptography as set forth in various
sources, e.g. [18]. Most important is the ability to prove that a ciphertext is the en-
cryption of the result of a polynomial function over multiple encrypted values and/or
constants known to a verifier (and whose corresponding plaintexts are neither known
nor learned.)

In addition, these systems permit proving inequalities: which of two ciphertexts
represents a larger value; and equality: that two ciphertexts represent the same value;
without revealing any further information about the ciphertexts. Interval proofs (see, for
example, [2, 12, 15]) make this possible.

If a homomorphic cryptosystem used for the computations is homomorphic only in
addition, such as the system described by Paillier [14] and elaborated by Damgård in
[5] and Parkes et al. in [15], then additional preparation is required to prove results of
computations employing both additions and multiplications. Rabin et al.’s scheme [16]
based on splitting values into hashes of random pairs also enjoys the provably cor-
rect secrecy on addition and multiplication necessary to perform these computations.
Gentry’s “fully homomorphic” scheme [6, 7] and related systems [21, 4] do not require

1 Szydlo [17] introduced the idea of homomorphic cryptography for risk analysis, though his
work is limited only to an individual portfolio and not market risk.



the prover to prove multiplications correct, simplifying the verification operations. Al-
though they have been implemented and tested, in practice they seem to be less efficient
than Paillier’s scheme.

Finally, we observe that in high-frequency implementations the ability to pre- and
post-process the bulk of the cryptography is critical. For example, in Paillier cryp-
tography, the most expensive operation in an encryption is a modular exponentiation
of a random help value, which may be precomputed provided the result is kept se-
cure. In practice, a market participant might prepare a large number of these precom-
puted values to enable rapid submission of information into a rapidly changing market.
Traders are now using field-programmable gate arrays to reduce execution time [13],
and some have even considered creating application-specific integrated circuits encod-
ing the most valuable trading algorithms. Simple rules could be encoded in these hard-
ware or firmware structures, allowing hardware to make decisions at lightning speed
with software proving the results correct.

That said, our or similar protocols could be implemented on a platform such as
secure multi-party computation (see e.g. Bogetoft et al. [1]) that offers stronger security
guarantees. In our view, provable correctness with a partially trusted exchange is an
important, intentional tradeoff of perfect security versus business pragmatics.

In this short paper, we refer the reader to this previous work for further detail on the
various cryptosystems.

2 The Protocol

We describe an example protocol with sample rules to illustrate our idea. Our objective
is not to define the only way to implement such an exchange, but to show how market
designers may design an exchange in our framework.

2.1 The Rules

A rule is an optional trigger and an action. The trigger is a set of conditions in the
marketplace, such as a price target, a difference in price movement versus that of an-
other asset, or a trading volume target. It is inherently conditional: take an action if the
conditions are true. A rule with no trigger takes place at each tick.

A trigger may also be a combination of other triggers via (else) or logical operator
(and, or, xor).

The action is a trade, which we represent by a set of quantities for each security in
the universe served by the market. For example, in an exchange specializing in the S&P
500 stocks, the action would consist of 500 encrypted positive or negative integers to
represent how many shares to buy or sell, respectively, with each integer corresponding
to a security. Some rules might have a null action (all zeroes) so that a participant can
always submit the same number of rules to hide trading interest.

Some trades include a price vector which includes the least attractive prices at which
the associated quantities may be traded. We also use the term “order” to refer to a trade
caused by an action.



In our example, observers can also learn something about the structure of the rules
by the way they are evaluated, but can’t learn to which securities the rules apply. All
rules are applied to vectors of securities. For example, in our universe of 500 securities,
VECTOR might be a vector of 500 encryptions of prices, volume, etc. which are mostly
zeroes in order to mask the relevant securities.

There may be situations in which only one of two or more rules may be triggered.
Thus, the exchange also needs a policy to break ties. A rigorous treatment of tiebreaking
is beyond the scope of the short paper format, but because arbitrary computations can be
proven correct, many tiebreaking functions are possible; some of these include random
precedence, global welfare maximization, or precedence by submission time.

An alert is a “panic button” in which a rule may indicate that the computer has
encountered an unexpected market situation and seeks human intervention or guidance.

For our example, we define a simple language in which each rule may be built. We
propose a simple language to illustrate what this might look like. Each executed action
results in an id, e.g. a confirmation number so that an order may be canceled later.
Some orders are easily encoded, e.g. stop loss orders, which are a trigger to sell when
the market prices drop below the stop loss. It would be straightforward to extend to more
complex orders, e.g. “fill or kill” that required immediate and complete execution.

RULE: ACTION

RULE: if TRIGGER ACTION

RULE: if TRIGGER ACTION else RULE

ACTION: ACTION, ACTION -- an action may be a sequence

ACTION: trade VECTOR -- market order: shares

ACTION: trade VECTOR at VECTOR -- limit order: shares at prices

ACTION: cancel ACTION_ID

ACTION: alert

TRIGGER: (TRIGGER)

TRIGGER: TRIGGER and|or|xor TRIGGER

TRIGGER: now between BEFORE and AFTER -- date/time comparison

TRIGGER: prices > VECTOR

TRIGGER: volume > VECTOR

VECTOR: [AMOUNT, AMOUNT, ... AMOUNT] -- one for each security

AMOUNT: +|- (${dollar amount}|{integer} shares)

SYMBOL: { universe of securities }

ACTION:ID: { id of previously executed action }

So, for example, one rule might be “At each round, I’d like to buy 1,000 shares of
security #2 for up to $50 per share if volume is less than 10,000 shares, or up to $45 per
share if volume is less than 20,000 shares.”2

if ( volume < [NULL, 10000, ...] and prices <= [NULL, 50, ...] )

or ( volume < [NULL, 20000, ...] and prices <= [NULL, 45, ...] )

trade [0, +1000, ...]

2 A participant may wish to trade a smaller number of shares in several trades over time to obtain
an average price.



A market maker might guarantee certain securities can be traded at all points in time at
some cost with simple price-bounded rules.

For her part, Alice, to avoid losing her lunch upon returning to the office, might
have submitted an order like the following:

if ( price <= [NULL, 9.00, ...] and volume < [NULL, 20000000, ...] )

id = trade [0, +100000, ...] at [NULL, 9.00, ...]

if ( volume > [NULL, 20000000, ...] )

cancel id

Alice places a conditional order to buy 100,000 shares if the price drops to $9.00 per
share and volume is within 2x of normal. However, she also places an order to cancel
her limit order if it is triggered and volume later exceeds normal trading volume. Alice
can keep her orders secret but retain protection against the free trading option of a limit
order.

In practice, NULL values will be implemented by an extremely large (functionally
infinite) positive integer for upper bounds, and an extremely large negative integer for
lower bounds, so that those elements of each vector are always matched. Care should
be taken if encoding these values in a finite field commonly used by homomorphic
encryption schemes to ensure that the interval proofs remain valid.

2.2 Exchange Process

For simplicity, we have designed the process to occur at discrete time intervals rather
than as a stream of orders as is common in many electronic trading systems.

The exchange is able to decrypt the trading rules in the setup phase, and the verifica-
tion takes place after the fact. All live trading is conducted in real time by the exchange;
the cryptographic proofs serve to keep everyone honest.

The discrete ticks driving the exchange forward might occur at the arrival of each
new quotation, every second, every hour, or at other designated times of day. At each
tick, the exchange establishes a “market price” for the securities from existing quota-
tions for the security. In synchronous models with longer discrete times between ticks,
the exchange would obtain market prices from a fair source, for example, equities traded
on the New York Stock Exchange and NASDAQ might trade at the midpoint of the na-
tional best bid and offer (NBBO). This technique is used by existing dark pools.

The exchange conducts the following steps:
Setup. The exchange accepts encrypted rules from all participants before evaluating

the rules at each tick. The exchange and the participants also publish their encrypted
rules. These are used to validate the audit trail.

The following steps are repeated for each tick:
Step 0. (Optional.) The exchange withdraws any rules at participants’ requests.
Step 1. The exchange evaluates all the rules based on the time and date of the tick,

and the market prices at the time of the exchange.
Step 2. The market clears at exchange prices according to the submitted trading

rules and exchange policies. In this step, the market first evaluates every trigger, then
generates a list of trades to execute. In the event of incompatible trades, ties are broken
according to published rules (possibly including randomness).



Step 3 (offline). The exchange publishes a proof proving why the accepted trades
are consistent with policies and the trading rules. For example, to prove
( volume < [NA, 10000, ...] and prices <= [NA, 50, ...] )

the proof would use the participant’s encryptions of [NA, 10000, ...], [NA, 50,

...] and issue pairwise proofs for the current trading volume and price of each security.
Proofs of any broken ties are also issued.

In this case, the exchange would prove that (a) the volume of security 0 is less than
NA (a huge integer) and the volume of security 1 is less than 10,000; and (a) the price
of security 0 is less than NA (a huge integer) and the price of security 1 is less than $50.
This adds the (encrypted) trade vector [0, 1000, ...] to the list of executed trades for
that participant. Because the trade vectors can be encrypted, an aggregate trade vector
across all trades can be printed. This can further mask a trading algorithm while still
providing transparency and auditability.

Step 4 (offline). The exchange publishes a record (“prints the ticker”) of the ac-
cepted trades in accordance with regulation and notifies the participants whose rules
generated trades. The exchange issues a proof that the encrypted trade vectors of all
executed trades sum to the zero vector [0, 0, ... 0] (assuming no public offerings!).

Afterward, anyone can verify the proof using the encrypted trading rules.

3 Conclusions

When compared to existing dark pools, our protocol offers a few material advantages.
First, it permits participants to see that their trades are being executed according to
the rules without favoring particular parties (e.g. clients with other business.) Second,
it protects them from having to monitor exchange movements in real time on their
own. Third, it enables the exchange to examine systemic risks or even simulate various
scenarios on the market in a fundamentally new way.

There are rich implications for risk management. Participants are able to judge for
themselves what “bad news” looks like based on market information ahead of time and
have those rules within the exchange before a big event. That also means that partici-
pants don’t have to worry about whether their connection to the exchange will be up or
whether they can get trade execution during a crisis moment.

On the other hand, it is not known whether market participants will be willing to
share trading rules with a third party, even if it is a locked down computer system. This
information may be simply too sensitive for some. Based on the evidence that some
institutions share meaningful information with ECN’s like LiquidNet and Pipeline, we
believe that an exchange that offers better liquidity, lower price, or reduced disclosure
may be interesting.

It may also be challenging to craft a set of rules that offer sufficient expressive-
ness while still working within our provably correct framework. Nonetheless, we view
this novel approach as an interesting continuation of past research in applications of
cryptography in exchanges of assets.

Future work on this topic might include a richer set of trading rules, a prototype
implementation of an exchange with performance analysis, and additional discussion
with market participants about what features they would like to see.



References

1. P. Bogetoft, I. Damgård, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. A practical im-
plementation of secure auctions based on multiparty integer computation. In Proc. 10th
International Conference on Financial Cryptography and Data Security (FC 2006), 2006.

2. F. Boudot. Efficient proofs that a committed number lies in an interval. In Lecture Notes in
Computer Science, volume 1807, pages 431–444. Springer, 2000.

3. J. Bunge. ’dark pool’ settlement shines light on potential abuses. The Wall Street Journal,
25 October 2011.

4. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic encryption over
the integers with shorter public keys. In Advances in Cryptology – CRYPTO 2011, volume
6841, pages 487–504. 2011.

5. I. Damgård and M. Jurik. A generalisation, a simplification and some applications of Pail-
lier’s probabilistic public-key system. In Proceedings of Public Key Cryptography ’01, 2001.

6. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

7. C. Gentry and S. Halevi. Implementing gentrys fully-homomorphic encryption scheme. In
K. Paterson, editor, Advances in Cryptology EUROCRYPT 2011, volume 6632 of Lecture
Notes in Computer Science, pages 129–148. Springer Berlin / Heidelberg, 2011.

8. L. Harris. Trading and Exchanges. Oxford University Press, 2003.
9. J. Johnson and L. Tabb. Groping in the dark: Navigating crossing networks and other dark

pools of liquidity, 31 January 2007.
10. E. E. Kaufman and C. M. Levin. Preventing the next flash crash. The New York Times, 5

May 2011.
11. D. B. Keim and A. Madhavan. The upstairs market for large-block transactions: Analysis

and measurement of price effects. Review of Finacial Studies, 9:1–36, 1996.
12. A. Kiayias and M. Yung. Efficient cryptographic protocols realizing e-markets with price

discrimination. In Financial Cryptography and Data Security, pages 311–325, 2006.
13. A. Madhavapeddy and S. Singh. Reconfigurable data processing for clouds. Proc. IEEE

19th Annual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), 1-3 May 2011.

14. P. Paillier. Public-key cryptosystems based on composite residuosity classes. In Proc. EU-
ROCRYPT ’99, pages 223–239, 1999.

15. D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A. Thorpe. Practical secrecy-preserving,
verifiably correct and trustworthy auctions. Electronic Commerce Research and Applica-
tions, 2008. To appear.

16. M. O. Rabin, R. A. Servedio, and C. Thorpe. Highly efficient secrecy-preserving proofs
of correctness of computations and applications. In Proc. IEEE Symposium on Logic in
Computer Science, 2007.

17. M. Szydlo. Risk assurance for hedge funds using zero knowledge proofs. In Proc. 9th
International Conference on Financial Cryptography and Data Security (FC 2005), 2005.

18. C. Thorpe and D. Parkes. Cryptographic combinatorial securities exchanges. In Financial
Cryptography and Data Security, volume 5628 of Lecture Notes in Computer Science, pages
285–304. Springer Berlin / Heidelberg, 2009.

19. C. Thorpe and D. C. Parkes. Cryptographic securities exchanges. In Proc. Financial Cryp-
tography and Data Security, 2007.

20. U.S. CFTC and U.S. SEC. Findings Regarding the Market Events of May 6, 2010, 30
September 2010.

21. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. Cryptology ePrint Archive, Report 2009/616, 2009.


