Memory-Efficient Garbled Circuit Generation for
Mobile Devices

Benjamin Mood, Lara Letaw, and Kevin Butler

Department of Compter & Information Science
University of Oregon, Eugene, OR 97405 USA
{bmood, zephron,butler}@cs.uoregon. edu

Abstract. Secure function evaluation (SFE) on mobile devices, such
as smartphones, creates compelling new applications such as privacy-
preserving bartering. Generating custom garbled circuits on smartphones,
however, is infeasible for all but the most trivial problems due to the high
memory overhead incurred. In this paper, we develop a new methodology
of generating garbled circuits that is memory-efficient. Using the stan-
dard SFDL language for describing secure functions as input, we design
a new pseudo-assembly language (PAL) and a template-driven compiler
that generates circuits which can be evaluated with Fairplay. We deploy
this compiler for Android devices and demonstrate that a large new set
of circuits can now be generated on smartphones, with memory overhead
for the set intersection problem reduced by 95.6% for the 2-set case. We
develop a password vault application to show how runtime generation of
circuits can be used in practice. We also show that our circuit generation
techniques can be used in conjunction with other SFE optimizations.
These results demonstrate the feasibility of generating garbled circuits
on mobile devices while maintaining high-level function specification.

1 Introduction

Mobile phones are extraordinarily popular, with adoption rates unprecedented
in the history of product adoption by consumers. Smartphones in particular have
been embraced, with over 296 million of these devices shipped in 2010 [4]. The in-
creasing importance of the mobile computing environment requires functionality
tailored to the limited resources available on a phone. Concerns of portability
and battery life necessitate design compromises for mobile devices compared
to servers, desktops, and even laptops. In short, mobile devices will always be
resource-constrained compared to their larger counterparts. However, through
careful design and implementation, they can provide equivalent functionality
while retaining the advantages of ubiquitous access.

Privacy-preserving computing is particularly well suited to deployment on
mobile devices. For example, two parties bartering in a marketplace may wish
to conveal the nature of their transaction from others, and share minimal infor-
mation with each other. Such a transaction is ideally suited for secure function
evaluation, or SFE. Recent work, such as by Chapman et al. [6], demonstrates
the myriad applications of SFE on smartphones.

However, because of computational and memory requirements, performing
many of these operations in the mobile environment is infeasible; often, the only
hope is outsourcing computation to a cloud or other trusted third party, thus
raising concerns about the privacy of the computation.

In this paper, we describe a memory-efficient technique for generating the
garbled circuits needed to perform secure function evaluation on smartphones.
While numerous research initiatives have considered how to evaluate these cir-
cuits more efficiently [16, 7], little work has gone towards efficient generation.
Our port of the canonical Fairplay [12] compiler for SFE to the Android mobile
operating system revealed that because of intensive memory requirements, the
majority of circuits could not be compiled in this environment. As a result, our
main contribution is a novel design to compile the high-level Secure Function
Definition Language (SFDL) used by Fairplay and other SFE environments into
garbled circuits with minimal memory usage. We created Pseudo Assembly Lan-
guage (PAL), a mid-level intermediate representation (IR) compiled from SFDL,
where each instruction represents a pre-built circuit. We created a Pseudo As-
sembly Language Compiler (PALC), which takes in a PAL file and outputs the
corresponding circuit in Fairplay’s syntax. We then created a compiler to compile
SEFDL files into PAL and then, using PALC, to the Secure Hardware Definition
Language (SHDL) used by Fairplay for circuit evaluation.

Using these compilation techniques, we are able to generate circuits that were
previously infeasible to create in the mobile environment. For example, the set
intersection problem with sets of size two requires 469 KB of memory with our
techniques versus over 10667 KB using a direct port of Fairplay to Android,
a reduction of 95.6%. We are able to evaluate results for the set intersection
problem using four and eight sets, as well as other problems such as Levenshtein
distance; none of these circuits could previously be generated at all on mobile
devices due to their memory overhead. Combined with more efficient evaluation,
our techniques provide a new arsenal for making privacy-preserving computation
feasible in the mobile environment.

The rest of this paper is organized as follows. Section 2 provides background
on secure function evaluation, garbled circuits, and the Fairplay SFE compiler.
Section 3 describes the design of PAL, our pseudo assembly language, and our
associated compilers. Section 4 describes our testing environment and method-
ology, and provides benchmarks on memory and execution time. Section 5 de-
scribes applications that demonstrate circuit generation in use, while Section 6
describes related work and Section 7 concludes.

2 Background

2.1 Secure Function Evaluation with Fairplay

The origins of SFE trace back to Yao’s pioneering work on garbled circuits [18§].
SFE enables two parties to compute a function without knowing each other’s
input and without the presence of a trusted third party. More formally, given

participants Alice and Bob with input vectors @ = ag,a1,---a,_1 and b =
bo, by, - - - by—1 respectively, they wish to compute a function f(a,b) without re-
vealing any information about the inputs that cannot be gleaned from observing
the function’s output. Fundamentally, SFE is predicated on two cryptographic
primitives. Garbled circuits allow for the evaluation of a function without any
party gaining additional information about the participants. This is possible
since one party creates a garbled circuit and the other party evaluates the circuit
without knowing what the wires represent. Secondly, oblivious transfer allows the
party executing the garbled circuit to obtain the correct wires for setting inputs
from the other party without gaining additional information about the circuit;
in particular, a 1-out-of-n OT protocol allows Bob to learn about one piece of
data without gaining any information on the remaining n — 1 pieces.

A garbled circuit is composed of many garbled gates, with inputs represented
by two random fixed-length strings. Like a normal boolean gate, the garbled
gate evaluates the inputs and gives a single output, but alterations are made
to the garbled gate’s truth table: aside from the randomly chosen input values,
the output values are uniquely encrypted by the input wires and an initialization
vector. The order of the entries in the table is then permuted to prevent the order
from giving away the value. Consequently, the only values saved for the truth
table are the four encrypted output values. A two-input gate is thus represented
by the two inputs and four encrypted output values.

The garbled circuit protocol requires that both parties are able to provide
inputs. If Bob creates the circuit and Alice receives it, Bob can determine which
wires to set, and Alice performs an oblivious transfer to receive her input wires.
Once she knows her input wires she runs the circuit by evaluating each gate in
order. To evaluate a gate, she uses the input values as the key to decrypt the
output value. To find the correct entry in the table, Alice uses a decryption step
using the input wires as keys. To find her output, Alice acquires a translation
table, a hash of the wires, from Bob for her possible output values. She then can
perform the hash on her output wires to see which wires were set. Alice sends
Bob’s output in garbled form since she cannot interpret it.

Fairplay is the canonical tool for generating and evaluating garbled circuits
for secure function evaluation. The Fairplay group is notable for creating the
abstraction of a high-level language, known as SFDL. This language describes
secure evaluation functions and is compiled SHDL, which is written in the style
of a hardware description language such as VHDL and describes the garbled
circuit. The circuit evaluation portion of Fairplay provides for the execution
of the garbled circuit protocol and uses oblivious transfer (OT) to exchange
information. Fairplay uses the 1-out-of-2 OT protocols of Bellare et al. [1] and
Naor et al. [14] which allows for Alice to pick one of two items that Bob is offering
and also prevents Bob from knowing which item she has picked.

Examining the compiler in more detail, Fairplay compiles each instruction
written in SFDL into a so-called multi-bit instruction. These multi-bit (e.g. inte-
ger) instructions are transformed to single-bit instructions (e.g., the 32 separate
bits to represent that integer). From these single-bit instructions, Fairplay then

FPPALC PALC
Fairplay SFDL | Fairplay compiler [eiy 5y SHDIL]

(a) Fairplay compiler process. (b) PAL compiler process.

Fig. 1: Compilation with Fairplay versus PAL.

unrolls variables, transforms the instructions into SHDL, and outputs the file,
either immediately or after further circuit optimizations.

Fairplay’s circuit generation process is very memory-intensive. We performed
a port of Fairplay directly to the Android mobile platform (described further in
Section 4) and found that a large number of circuits were completely unable
to be compiled. We examined the results of circuit compilation on a PC to
determine the scope of memory requirements. From tests we performed on a
64-bit Windows 7 machine, we observed that Fairplay needed at least 245 MB of
memory to run the compilation of the keyed database program, a program that
matches database keys with values and employs SFE for privacy preservation
(described further in Section 4). In order to determine the cause of this memory
usage, we began by analyzing Fairplay’s compiler.

From our analysis, Fairplay uses the most memory during the mapping op-
eration from multi-bit to single-bit instructions. During this phase, the memory
requirements increased by 7 times when the keyed database program ran. We
concluded that it would be easier to create a new system for generating the SHDL
circuit file, rather than making extensive modifications to the existing Fairplay
implementation. To accomplish this, we created an intermediate language that
we called PAL, described in detail in section 3.

2.2 Threat Model

As with Fairplay, which is secure in the random oracle model implemented using
the SHA-1 hash function, our threat model accounts for an honest-but-curious
adversary. This means the participants will obey the given protocol but may look
at any data the protocol produces. Note that this assumption is well-described
by others considering secure function and secure multiparty computation, such
as Kruger et al.’s OBDD protocol [10], Pinkas et al.’s SFE optimizations [16],
the TASTY proposal for automating two-party communication [5], Jha et al.’s
privacy-preserving genomics [8], Brickell et al.’s privacy-preserving classifiers [3]
and Huang et al.’s recent improvements to evaluating SFE [6]. Similarly, we
make the well-used assumption that parties enter correct input to the function.

3 Design

To overcome the intensive memory requirements of generating garbled circuits
within Fairplay, we designed a pseudo assembly language, or PAL, and a pseudo

| Possible Operations

Operation Syntax

Addition DEST + V1 V2

Greater than or Equal to DEST >= V1 V2

Equal to DEST == V1 V2

Bitwise AND DEST & V1 V2

If Conditional DEST IF COND V1 V2

Input line INPUT V1 a (or INPUT V1 b)
Output line INPUT V1 a (or INPUT V1 b)

For loop V1 FOR X (an integer) to Y (an integer)
Call a procedure V1 PROC

Call a function DEST,...,DEST = FunctionName(param, ... ,param)
Multiple Set Equals DEST,...,.DEST=V,...V

Table 1: PAL Operations

assembly language compiler called PALC. As noted in Figure 1, we change Fair-
play’s compilation model by first compiling SFDL files into PAL using our FP-
PALC compiler, and generating the SHDL file which can then be run using
Fairplay’s circuit evaluator with our PALC compiler.

3.1 PAL

We first describe PAL, our memory-efficient language for garbled circuit cre-
ation. PAL resembles an assembly language where each instruction corresponds
to a pre-optimized circuit. PAL is composed of at least two parts: variable dec-
larations and instructions. PAL files may also contain functions and procedures.
A full table showing all headings can be found in the full technical report [13]
and is elided here because of space constraints.

Table 1 lists an abbreviated set of operations that are available in PAL along
with their instruction signatures. The full set can be found in our technical
report [13]. Each operation consists of a destination, an operator, and one to
three operands. DEST, V1, V2, and COND are variables in our operation listing.
PAL also has operations not found in Fairplay, such as shift and rotate.

Note that conditionals can be reduced to the IF conditional. Unlike in regular
programs, all parts of an IF circuit must be executed on every run.

The first part of a PAL program is the set of variable declarations. These con-
sist of a variable name and bit length, and the section is marked by a Variables:
label. In this low-level language there are no structs or objects, only integer vari-
ables and arrays. Each variable in a PAL file must be declared before it can be
used. Array indices may be declared at any point in the variable name.

Figure 2 shows an example of variables declared in PAL. Alicekey and
Bobkey have a bit length of 6, Bobin and Aliceout have a bit length of 32,
COND is a boolean like variable which has a bit length of 1, and Array[7] is an
array of seven elements where each have a bit length of 5. All declared variables

Variables:
Alicekey 6

Instructions:
Bobin IN b

Bobin 32 Bobkey IN b

Bobkey 6 Alicekey IN a

Aliceout 32 COND == Alicekey Bobkey

COND 1 Aliceout IF COND Bobin Aliceout

Array [7] 5 Aliceout O0OUT a

Fig.3: Example of number comparison
(for keyed database problem) in PAL.

Fig. 2: Example of variable dec-
larations in PAL.

Variables: $cO0 = $t0
i 6 out.a IF $cO in.b[i].data out.a
in.a 6

in.b[16] .data 24 Instructions:

in.b[16].key 6

in.b[16].data IN b

out.a 24 in.b[16].key IN b
$cO 1 in.a IN a
$t0 1 DBsize = 16
DBsize 64 i FOR 0 15

$p0 PROC

Procedure: $p0 out.a 0UT a

$t0 == in.a in.b[i].key

Fig. 4: Representation of keyed database program in PAL.

are initialized to 0. After variable declarations, a PAL program can have function
and procedure definitions preceding the instructions, which is the main function.

Figure 3 shows the PAL instructions for comparing two keys as used in the
keyed database problem, described more fully below. The first two statements
are input retrieval for Bob, while the third retrieves input for Alice. A boolean
like variable COND is set based on a comparison and the output is set accordingly.
Note that constants are allowed in place of V1, V2, or COND in any instruction.
PAL supports loops, functions, and procedures.

To illustrate a full program, Figure 4 shows the keyed database problem
in PAL, where a user selects data from another user’s database without any
information given about the item selected. In this program, Bob enters 16 keys
and 16 data entries and Alice enters her key. If Alice’s key matches one of
Bob’s then Alice’s output of the program is Bob’s data entry that held the
corresponding key. The PAL program shows how each key is checked against
Alice’s key. If one of those keys matches, then the output is set.

3.2 PALC

Circuits generated by our PALC compiler, which generates SHDL files from PAL,
are created using a database of pre-generated circuits matching instructions to

their circuit representations. These circuits, other than equality, were generated
using simple Fairplay programs that represent equivalent functionality. Any op-
eration that does not generate a gate is considered a free operation. Assignments,
shifts, and rotates are free.

Variables in PALC have two possible states: they are either specified by a
list of gate positions or they have a real numerical value. If an operation is
performed on real value variables, the result is stored as a real value. These real
value operations do not need a circuit to be created and are thus free.

When variables of two different sizes are used, the size of the operation is
determined by the destination. If the destination is 24 bits and the operands are
32 bits, the operation will be performed 24-bit operands. This will not cause an
error but may yield incorrect results if false assumptions are made.

There are currently a number of known optimizations, such as removing static
gates, which are not implemented inside PALC; these optimization techniques
are a subject of future work.

3.3 FPPALC

To demonstrate the feasibility of compileing non-trivial programs on a phone, we
modified Fairplay’s SFDL compiler to compile into PAL and then run PALC to
compile to SHDL. This compiler is called FPPALC. Compiling in steps greatly
reduces the amount of memory that is required for circuit generation.

We note our compiler will not yield the same result as Fairplay’s compiler
in two cases, which we believe demonstrate erroneous behavior in Fairplay. In
these instances, Fairplay’s circuit evaluator will crash or yield erroneous results.
A more detailed explanation can be found in our technical report [13], To sum-
marize, unoptimized constants in SFDL can cause the evaluator to crash, while
programs consisting of a single if statement can produce inconsistent variable
modifications. Apart from these differences, the generated circuits have equiva-
lent functionality.

For our implementation of the SFDL to PAL compiler we took the original
Fairplay compiler and modified it to produce the PAL output by removing all
elements besides the parser. From the parser we built our own type system,
support for basic expressions, assignment statements, and finally if statements
and for loops. All variables are represented as unsigned variables in the output
but input and other operations treat them as signed variables. Our implemen-
tation of FPPALC and PALC, which compile SFDL to PAL and PAL to SHDL
respectively, comprises over 7500 lines of Java code.

3.4 Garbled Circuit Security

A major question posed about our work is the following: Does using an in-
termediate metalanguage with precompiled circuit templates change the security
guarantees compared to circuits generated completely within Fairplay? The sim-
ple answer to this question is no: we believe that the security guarantees offered
by the circuits that we compile with PAL are equivalent to those from Fairplay.

l Memory (KB) l Time (ms)

Program Initial| SFDL—PAL|PAL—SHDL|SFDL—PAL|PAL—SHDL|Total
Millionaires 4931 5200 5227 90 29 119
Billionaires 4924 5214 5365 152 54 206

CoinFlip 5042 5379 5426 139 122 261

KeyedDB 4971 5365 5659 142 220 362

SetInter 2 5064 5393 5533 161 305 466

SetInter 4 5078 5437 5600 135 1074 1209

SetInter 8 5122 5542 5739 170 6659 6829

Levenshtein Dist 2| 5184 5431 5576 183 336 519
Levenshtein Dist 4| 5233 5436 5638 190 622 802
Levenshtein Dist 8| 5264 5473 5693 189 2987 3172

Table 2: FPPALC on Android: total memory application was using at end of
stages and the time it took.

Because there are no preconditions about the design of the circuit in the de-
scription of our garbled circuit protocol, any circuit that generates a given result
will work: there are often multiple ways of building a circuit with equivalent
functionality. Additionally, the circuit construction is a composition of existing
circuit templates that were themselves generated through Fairplay-like construc-
tions. Note that the security of Fairplay does not rely on how the circuits are
created but on the way garbled circuit constructs work. Therefore, our circuits
will provide the same security guarantees since our circuits also rely on using
the garbled circuit protocol.

4 Evaluation

In this section, we demonstrate the performance of our circuit generator to show
its feasibility for use on mobile devices. We targeted the Android platform for
our implementation, with HT'C Thunderbolts as a deployment platform. These
smartphones contain a 1 GHz Qualcomm Snapdragon processor and 768 MB of
RAM, with each Android application limited to a 24 MB heap.

4.1 Testing Methodology

We benchmarked compile-time resource usage with and without intermediate
compilation to the PAL language. We tested on the Thunderbolts; all results
reported are from these devices. Memory usage on the phones was measured
by looking at the PSS metric, which measures pages that have memory from
multiple processes. The PSS metric is an approximation of the number of pages
used combined with how many processes are using a specific page of memory.
Several SFDL programs, of varying complexity, were used for benchmarking.
Each program is described below. We use the SFDL programs representing the

Millionaires, Billionaires, and Keyed Database problems as presented in Fair-
play [11]. The other SFDL files that we have written can be found in the full
technical report [13]. We describe these below in more detail.

The Millionaire’s problem describes two users who want to determine which
has more money without either revealing their inputs. We used a 4-bit integer
input for this problem. The Billionaire’s problem is identical in structure but
uses 32-bit inputs instead. The CoinFlip problem models a trusted coin flip
where neither party can determine the program’s outcome deterministically. It
takes two inputs of 24-bit inputs per party. In the Keyed database program, a
user performs a lookup in another user’s database and returns a value without
the owner being aware of which part of the database is looked up — we use a
database of size 16. The keys are 6-bits and the data members are 24-bits. The
Set intersection problem determines elements two users have in common, e.g.,
friends in a social network. We measured with sets of size 2, 4, and 8 where 24-bit
input was used. Finally, we examined Levenshtein distance, which measures edit
distance between two strings. This program takes in 8-bit inputs.

4.2 Results

Below the results of the compile-time tests performed on the HTC Thunderbolts.
We measured memory allocation and time required to compile, for both the
Fairplay and PAL compilers. In the latter case, we have data for compiling to
and from the PAL language. Our complete compiler is referred to FPPALC in
this section.

Memory Usage & Compilation Time Table 2 provides memory and execu-
tion benchmarks for circuit generation, taken over at least 10 trials per circuit.
We measure the initial amount of memory used by the application as an SFDL
file is loaded, the amount of memory consumed during the SFDL to PAL com-
pilation, and memory consumed at the end of the PAL to SHDL compilation.

As an example of the advantages of our approach, we successfully compiled
a set intersection of size 90 that had 33,000,000 gates on the phone. The output
file was greater than 2.5 GB. Android has a limit of 4 GB per file and if this was
not the case we believe we could have compiled a file of the size of the memory
card (30 GB). This is because the operations are serialized and the circuit never
has to fully remain in memory.

Although we did not focus on speed, Table 2 gives a clear indication of where
the most time is used per compilation: the PAL to SHDL phase, where the circuit
is output. The speed of this phase is directly related to the size of the program
that is being output, while the speed of the SFDL to PAL compliation is related
to the number of individual instructions.

Comparison to Fairplay Table 3 compares the Fairplay compiler with FP-
PALC. Where results are not present for Fairplay are situations where it was
unable to compile these programs on the phone. For the set intersection problem

Memory (KB) |

Program Fairplay| FPPALC
Millionaires 658 296
Billionaires 1188 441

CoinFlip 1488 384
KeyedDB 16 NA 688

SetInter 2 10667 469

SetInter 4 NA 522

SetInter 8 NA 617

Levenshtein Dist 2| NA 392
Levenshtein Dist 4| NA 405
Levenshtein Dist 8| NA 429

Table 3: Comparison of memory increase by Fairplay and FPPALC during circuit
generation.

l l Memory (KB) l Time (ms)
Program Initial|Open File| End |Open File|Fairplay|Nipane
Millionaires 5466 5556 5952 197 533 406
Billionaires 5451 5894 6287 579 1291 981
CoinFlip 5461 5933 6426 789 1795 | 1320

KeyedDB 16 5315 6197 7667 1600 1678 1593
SetInter 2 5423 5993 6932 1511 2088 1719
SetInter 4 5414 7435 11711 8619 7714 | 7146

Levenshtein Dist 2| 5617 6134 7162 1799 2220 | 2004
Levenshtein Dist 4| 5615 7215 |10787| 7448 6538 | 6150
Levenshtein Dist 8| 5537 | 12209 |20162| 29230 29373 | 27925

Table 4: Evaluating FPPALC circuits on Fairplay’s evaluator with both Nipane
et al.’s OT and the suggested Fairplay OT.

with set 2, FPPALC uses 469 KB of memory versus 10667 KB by Fairplay, a re-
duction of 95.6%. Testing showed that the largest version of the keyed database
problem that Fairplay could handle is with a database of size 10, while we easily
compiled the circuit with a database of size 16 using FPPALC.

Circuit Evaluation Table 4 depicts the memory and time of the evaluator
running the programs compiled by FPPALC. Consider again the two parties
Bob and Alice, who create and receive the circuit respectively in the garbled
circuit protocol. This table is from Bob’s perspective, who has a slightly higher
memory usage and a slightly lower run time than Alice. We present the time
required to open the circuit file for evaluation and to perform the evaluation using
two different oblivious transfer protocols. Described further below, we used both
Fairplay’s evaluator and an improved oblivious transfer (OT) protocol developed

[Memory (KB) [Time (ms) ‘

Program Initial|After File Opening| End |File Opening|Evaluating
Millionaires 5640 5733 5995 194 302
Billionaires 5536 5885 6303 631 958
+CoinFlip 5528 5796 6280 428 1062

KeyedDB 16 5551 6255 7848 2252 1955

SetInter 2 5439 6018 7047 1663 2131

SetInter 4 5553 7708 13507 10540 9555
+Levenshtein Dist 2| 5568 5872 6316 529 781
+Levenshtein Dist 4| 5577 6088 7178 1704 2213

Levenshtein Dist 8 | 5488 7670 13011 9745 8662

Table 5: Results from programs compiled with Fairplay on a PC evaluated with
Nipane et al.’s OT.

by Nipane et al. [15]. Note that Fairplay’s evaluator was unable to evaluate
programs with around 20,000 mixed two and three input gates on the phone.
This limit translates to 209 32-bit addition operations in our compiler.

While the circuits we generate are not optimized in the same manner as
Fairplay’s circuits, we wanted to ensure that their execution time would still
be competitive against circuits generated by Fairplay. Because of the limits of
generating Fairplay circuits on the phone, we compiled them using Fairplay on a
PC, then used these circuits to compare evaluation times on the phone. Table 5
shows the results of this evaluation. Programs denoted with a + required edits
to the SHDL to run in the evaluator, in order to prevent their crashing due
to the issues described in Section 3.3. In many cases, evaluating the circuit
generated by FPPALC resulted in faster evaluation. One anomaly to this trend
was Levenshtein distance, which ran about three times slower using FPPALC.
We speculate this is due to the optimization of constant addition operations and
discuss further in Section 5. Note, however, that these circuits are unable to be
generated on the phone using Fairplay and require pre-compilation.

4.3 Interoperability

To show that our circuit generation protocol can be easily used with other im-
proved approaches to SFE, we used the faster oblivious transfer protocol of
Nipane et al. [15], who replace the OT operation in Fairplay with 1-out-of-2 OT
scheme based on a two-lock RSA cryptosystem. Shown in Table 5, these pro-
vide an over 24% speedup for the Billionaire’s problem and 26% speedup for the
Coin Flip protocol. On average, there was an 13% decrease in evaluation time
across all problems. For the Millionaires, Billionaires, and CoinFlip programs
we disabled Nagle’s algorithm as described by Nipane et al., leading to better
performance on these problems. The magnitude of improvement decreased as
circuits increased in size, a situation we continue to investigate. Our main find-

Tl @ 5:05em
Host a Fairplay “

. Millionaires
o Billionaires
.Coin

M B 2:24 an

Host a Fairplay “

PA$$\VWOrD
(¥*777%jdd
Seed for SFDL: 83*3kd.
Ak#3id)
10.0.1.2

. KeyedDB
. SetInter
. Levenshtein

Fig. 5: Screenshots of editor and password wallet applications.

ings, however, are that our memory-efficient circuit generation is complementary
to other approaches that focus on improving execution time and can be easily
integrated.

5 Discussion

To demonstrate how our memory-efficient compiler can be used in practice, we
developed Android apps capable of generating circuits at runtime. We describe
these below.

5.1 GUI Based Editor

To allow compilation on a phone we have to address one large problem. Our
experience porting Fairplay to Android showed the difficulty of writing a program
on the phone. Figure 5 (a) shows an example of a GUI front-end for picking and
compiling given programs based on parameters. A list of programs is given to
the user who can then pick and choose which program they wish to run. For
some of the programs there is a size variable that can also be changed.

5.2 Password Vault Application

We designed an Android application that introduces SFE as a mechanism to pro-
vide secure digital deposit boxes for passwords. In brief, this “password vault”

can work in a decentralized fashion without reliance on the cloud or any third
parties. If Alice fears that her phone may go missing and wants Bob to have
a copy of her passwords, she and Bob can use their “master” passwords, along
with a seed value, as input to a pseudorandomly generated hash function. These
master inputs are not revealed to either party, nor is the output of the hash,
which is used to encrypt the password. If the passwords are ever lost, Alice
can call Bob and jointly recover the passwords; both must present their master
passwords to decrypt the password file, ensuring that neither can be individ-
ually coerced to retrieve the contents. Figure 5 (b) shows a screenshot of this
application. which can encrypt passwords from the user or decrypt those in the
database. Our evaluation shows that compiling the hash function requires 6407
KB of memory and approximately 7348 ms, with 85% of that time is the PAL
to SHDL conversion. Evaluating the circuit is more time intensive. Opening the
file takes 28.1 seconds, and performing the OTs and gate evaluation takes 23.2
seconds. We are exploring efficiencies to reduce execution time.

5.3 Experiences with Garbled Circuit Generation

One of the most important lessons from our implementation efforts was observing
the large burden on mobile devices caused when complete circuits must be kept
in memory. Better solutions only use small amounts of memory to direct the
actual computation, for instance, one copy of each circuit instead of IV for N of
the same type of statement.

The largest difficulty of the full circuit approach is the need for the full circuit
to be created. Circuits for O(n?) algorithms and beyond scale extremely poorly.
A different approach is needed for larger scalabiltiy. For instance, doubling the
Levenshtien distance n paremeter increased the circuit size by a factor of about
4.5 (decreasing the larger n grows), when n is 8 there are 11,268 gates, 16 is
51,348 gates, 32 is 218,676 gates, and 64 is 902,004 gates.

The original PAL did not scale well due to the fact it did not have loops,
arrays, procedures, or functions. Once those programming structures were added
the length of the PAL files were decreased dramaticly. Instead of unrolling all
programming control flow constructs we added them for smaller PAL programs.
The resulting circuits generated from the new PAL were very similar to the
original circuits.

6 Related work

Other research has primarily focused on optimizing the actual evaluation for
SFE, while we focus on generating circuits in a memory efficient manor. Kolesnikov
et al. [9] demonstrated a “free XOR” evaluation technique to improve execution
speed, while Pinkas et al. [16] implement techniques to reduce circuit size of the
circuits and computation length. We plan to implement these enhancements in
the next version of the circuit evaluator.

Huang et al. [7] have similarly focused on optimizing secure function evalua-
tion, focusing on execution in resource-constrained environments. The approach
differs considerably from ours in that users build their own functions directly at
the circuit level rather than using high-level abstractions such as SFDL. While
the resulting circuit may execute more quickly, there is a burden on the user
to correctly generate these circuits, and because input files are generated at
the circuit level in Java, compiling on the phone would require a full-scale Java
compiler rather than the smaller-scale SFDL compiler that we use.

Another way to increase the speed of SFE has been to focus on leverag-
ing the hardware of devices. Pu et al. [17] have considered leveraging Nvidia’s
CUDA-based GPU architecture to increase the speed of SFE. We have con-
ducted preliminary investigations into leveraging vector processing capabilities
on smartphones, specifically single-instruction multiple-data units available on
the ARM Cortex processing cores found within many modern smartphones, as
a means of providing better service for certain cryptographic functionality.

Kruger et al. [10] described a way to use ordered binary decision diagrams
(OBDDs) to evaluate SFE, which can provide faster execution for certain prob-
lems. Our future work will involve determining whether the process of preparing
OBDDs can benefit from our memory-efficient techniques. TASTY [5] also uses
different methods of privacy-preserving computation, namely homomorphic en-
cryption (HE) as well as garbled circuits, based on user choices. This approach
requires the user to explicitly choose the computation style, but may also benefit
from our generation techniques for both circuits and the homomorphic construc-
tions. FairplayMP [2] showed a method of secure multiparty computation. We
are examining how to extend our compiler to become multiparty capable.

7 Conclusion

We introduced a memory efficient technique for making SFE tractable on the
mobile platform. We created PAL, an intermediate language, between SFDL and
SHDL programs and showed that by using pre-generated circuit templates we
could make previously intractable circuits compile on a smartphone, reducing
memory requirements for the set intersection circuit by 95.6%. We demonstrate
the use of this compiler with a GUI editor and a password vault application. Fu-
ture work includes incorporating optimizations in the circuit evaluator and de-
termining whether the pre-generated templates may work with other approaches
to both SFE and other privacy-preserving computation primitives.

Acknowledgements

We would like to thank Patrick Traynor for his insights regarding the narrative
of the paper, and Adam Bates and Hannah Pruse for their comments.

This material is based on research sponsored by DARPA under agreement
number FA8750-11-2-0211. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright

notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Bellare and S. Micali. Non-Interactive Oblivious Transfer and Applications. In
International Crytology Conference, 1990.

A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a System for Secure Multi-
Party Computation. In 15th ACM Conference on Computer and Communications
Security (CCS’08), Alexandria, VA, 2008.

J. Brickell and V. Shmatikov. Privacy-Preserving Classifier Learning. In Proceed-
ings of Financial Cryptography and Data Security, Feb. 2009.

Gartner. Gartner Says Worldwide Mobile Device Sales to End Users Reached
1.6 Billion Units in 2010; Smartphone Sales Grew 72 Percent in 2010.
http://www.gartner.com/it/page.jsp?id=1543014, 2011.

W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY:
Tool for Automating Secure Two-Party Computations. In 17th ACM Conf. on
Computer and communications security (CCS’10), Chicago, IL, Oct. 2010.

Y. Huang, P. Chapman, and D. Evans. Privacy-Preserving applications on smart-
phones: Challenges and opportunities. In USENIX HotSec, Aug. 2011.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Computation
Using Garbled Circuits. In 20th USENIX Security Symposium, Aug. 2011.

S. Jha, L. Kruger, and V. Shmatikov. Towards Practical Privacy for Genomic
Computation. In 2008 IEEE Symp. on Security and Privacy, Nov. 2008.

V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and
Applications. In Proceedings of ICALP ’08, Reykjavik, Iceland, 2008.

L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure Function Evaluation with
Ordered Binary Decision Diagrams. In 13th ACM conference on Computer and
communications security (CCS’06), Alexandria, VA, Oct. 2006.

D. Malkhi, N. Nisan, and B. Pinkas. Fairplay Project,
http://www.cs.huji.ac.il/project /Fairplay/.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: a Secure Two-Party Com-
putation System. In 18th USENIX Security Symposium, San Diego, CA, 2004.

B. Mood, L. Letaw, and K. Butler. Memory-Efficient Garbled Circuit Generation
for Mobile Devices. Technical Report CIS-TR-2011-04, Department of Computer
and Information Science, University of Oregon, Eugene, OR, USA, Sept. 2011.
M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In Proceedings of
SODA ’01, Washington, DC, 2001.

N. Nipane, I. Dacosta, and P. Traynor. “Mix-In-Place” Anonymous Networking
Using Secure Function Evaluation. In Proceedings of ACSAC, Dec. 2011.

B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure Two-Party
Computation Is Practical. In Proceedings of ASIACRYPT, Tokyo, Japan, 2009.
S. Pu, P. Duan, and J.-C. Liu. Fastplay—A Parallelization Model and Implemen-
tation of SMC on CUDA based GPU Cluster Architecture. Cryptology ePrint
Archive, Report 2011/097, 2011. http://eprint.iacr.org/.

A. C.-C. Yao. How to Generate and Exchange Secrets. In Proceedings of the 27th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
162-167, Washington, DC, USA, 1986. IEEE Computer Society.

