
A Cache Timing Attack on AES in
Virtualization Environments

Michael Weiß?, Benedikt Heinz?, and Frederic Stumpf?

Fraunhofer Research Institution AISEC, Garching (near Munich), Germany
{michael.weiss, benedikt.heinz, frederic.stumpf}@aisec.fraunhofer.de

Abstract. We show in this paper that the isolation characteristic of
system virtualization can be bypassed by the use of a cache timing at-
tack. Using Bernstein’s correlation in this attack, an adversary is able
to extract sensitive keying material from an isolated trusted execution
domain. We demonstrate this cache timing attack on an embedded ARM-
based platform running an L4 microkernel as virtualization layer. We also
show that an attacker who gained access to the untrusted domain can
extract the key of an AES-based authentication protocol used for a finan-
cial transaction. We provide measurements for different public domain
AES implementations. Our results indicate that cache timing attacks are
highly relevant in trusted execution environments.

Keywords: Virtualization, Trusted Execution Environment, L4, Microkernel,
AES, Cache, Timing, Embedded

1 Introduction

Virtualization technologies provide a means to establish isolated execution en-
vironments. Using virtualization, a system can for example be split into two
security domains, one trusted domain and one untrusted domain. Security crit-
ical applications which perform financial transactions can then be executed in
the trusted domain while the general purpose operating system, also referred to
as rich OS, is executed in the untrusted domain. In addition, other untrusted
applications can be restricted to the untrusted domain.

It is generally believed that virtualization characteristics provide an isolated
execution environment where sensitive code can be executed isolated from un-
trustworthy applications. However, we will show in this paper that this isolation
characteristic can be bypassed by the use of cache timing attacks. A cache timing
attack exploits the cache architecture of modern CPUs. The cache architecture
has influence on the timing behavior of each memory access. The timing depends
on whether the addressed data is already loaded into the cache (cache-hit) or

? The authors and their work presented in this contribution were supported by the
German Federal Ministry of Education and Research in the project RESIST through
grant number 01IS10027A.

it is accessed for the first time (cache-miss). In case of a cache-miss, the CPU
has to fetch the data from the main memory which causes a higher delay com-
pared to a cache-hit where the data can be used directly from the much faster
cache. Based on the granularity of information an attacker uses for the attack,
cache timing attacks can be divided into three classes: time-driven [7, 16, 2, 15],
trace-driven [1, 9] and access-driven [16, 14]. Time-driven attacks depend only on
coarse timing observations of whole encryptions including certain computations.
In this paper, we use a time-driven attack which is the most general attack of
the three. To perform a trace-driven attack, an attacker has to be able to pro-
file the cache activity during a single encryption. In addition, he has to know
which memory access of the encryption algorithm causes a cache-hit. More fine
grained information about the cache behaviour is needed to perform an access-
driven attack. This attack additionally requires knowledge about the particular
cache sets accessed during the encryption. That means that those attacks are
highly platform dependent while time-driven attacks are portable to different
platforms as we will show.

Although trace- and access-driven cache attacks would be feasible in a vir-
tualized system, it would require much more effort to setup a spy-process. For
an access-driven attack, the adversary needs the physical address of the lookup
tables to know where they are stored in memory and thus the information to
which cache lines they are mapped. This cannot be accomplished by a spy-
process during runtime in the untrusted domain, as there is no shared library.
By a time-driven attack, it is sufficient to see the attacked system as a black
box.

Bernstein [7] for instance used this characteristic for a known plaintext attack
to recover the secret key of an AES encryption on a remote server. However,
Bernstein had to measure the timing on the attacked system to get rid of the
noisy network channel between the attacked server and the attacking client.
While this is a rather unrealistic scenario since the server needs to be modified,
it is very relevant in the context of virtualization. In the context of virtualization,
the noise is negligible since local communication channels are used for controlled
inter-domain data exchange. These communication channels are based on shared
memory mechanisms which introduce only a small and almost constant timing
overhead.

This paper is organized as follows. In the next section we state related works.
We analyze the general characteristics of a virtualization-based system and
present a generic system architecture that provides strong isolation of execution
environments in Section 3. We believe that this system architecture is repre-
sentative for related architectures based on virtualization that establish secure
execution environments. Based on this architecture, we show the feasibility to
adapt Bernstein’s attack. Further, in Section 4, we show that standard mutual
authentication schemes based on AES are vulnerable to cache timing attacks
executed as man-in-the-middle in the untrusted domain. We provide practical
measurements on an ARM Cortex-A8 based SoC running the Fiasco.OC micro-
kernel [22] and its corresponding runtime environment L4Re as virtualization

layer to confirm our proposition in Section 5. Finally, we conclude with a dis-
cussion about the results and possible countermeasures in Section 6.

2 Related Work

Bernstein provides in [7] a practical cache-timing attack on the OpenSSL imple-
mentation of AES on a Pentium III processor. He describes a known plaintext
attack to a remote server which provides some kind of authentication token.
However, Bernstein does not provide an analysis of his methodology and an ex-
planation why the attack is successful. This is revisited by Neve et al. [15]. They
present a full analysis of Bernstein’s attack technique and state the correlation
model. Later Aciiçmez et al. [2] proposed a similar attack extended to use second
round information of the AES encryption. However, they also provide only local
interprocess measurements in a rather unrealistic attack setup similar to Bern-
stein’s client-server scenario. Independently from Bernstein, Osvik et al. [16] also
describe a similar time-driven attack with their Evict+Time method. Further,
they depict an access-driven attack Prime+Probe with which they are able to
extract the disk encryption key used by the operating system’s kernel. However,
they need access to the file system which is transparently encrypted with that
key.

Ristenpart et al. [19] consider side-channel leakage in virtualization environ-
ments on the example of the Amazon EC2 cloud service. They show that there is
cross VM side-channel leakage. They used the Prime+Probe technique from [16]
for analyzing the timing side-channel. However, Ristenpart et al. are not able to
extract a secret encryption key from one VM.

There are also more sophisticated cache attacks which can recover the AES
key without any knowledge of the plaintext nor the ciphertext. Lately, Gullasch
et al. [14] describe an access-driven cache attack. They introduce a spy-process
which is able to recover the secret key after several observed encryptions. How-
ever, this spy-process needs access to a shared crypto library which is used in the
attacked process. Further, a DoS attack on the Linux’ scheduler is used to mon-
itor a single encryption. Recently, Bogdanov et al. [8] introduced an advanced
time-driven attack and analyzed it on an ARM-based embedded system. It is a
chosen plaintext attack which is using pairs of plaintexts. Those plaintexts are
chosen in a way that they exploit the maximum distance separable code. This
is a feature of AES used during MixColumns operation to provide a linear trans-
formation with a maximum of possible branch number. For 128-bit key length,
they have to perform exactly two full 16-byte encryptions for each plaintext pair
where the timing of the second encryption has to be measured.

Even though these attacks could be demonstrated in a virtualization-based
system, it would require strong adaptations of the system which may result in
an unrealistic attacker model. In contrast, the approach by Bernstein is more
flexible and provides a more realistic attacker model for a trusted execution
environment.

Trusted Environment

Embedded System / mobile Phone

Rich Environment

Protocol
Stacks

Protocol
Stacks

Rich OS Kernel

Crypto
Services

Crypto
Services

Secure
Devices

Secure
Devices

Device
Drivers

Device
Drivers

Virtualization LayerVirtualization Layer

HardwareHardware

TEE Kernel

Shared memory
Shared memory

User Application

Shared memory

Trusted Application

Shared memoryShared memory

Messages

Fig. 1. High level security architecture of an embedded device based on virtualization

3 System Architecture

We present in this section the system architecture of a generic virtualization-
based system. This system architecture is representative for other systems based
on virtualization and is later used to demonstrate our cache timing attack.

The system architecture consists of a high level virtualization-based security
architecture including the operating system and an authentication protocol used
to authenticate a security sensitive application executed in the trusted domain.

3.1 Virtualization-based Security Architecture

Virtualization techniques can be used to provide strong isolation of execution
environments and thus enables the construction of compartments. One com-
partment can then be used to execute sensitive transactions while the other
compartment is used for transactions with a lower trust level. This design pro-
cess is already partly employed by smartphone architectures. The Dalvik VM on
Android provides some sort of process virtualization [20, p. 83], however, with-
out providing the same level of isolation achieved by system virtualization [20,
p. 369]. Due to the insecurity of current smartphones’ and other embedded sys-
tems’ architectures, it is expected that virtualization solutions will be used in
the near future to increase security and reliability. This assumption is supported
by current developments in the embedded hardware architectures (ARM TZ [3],
Intel Atom VT-x [11]).

GlobalPlatform is currently in the process of specifying a high level system
architecture of a trusted execution environment (TEE) [4]. The security archi-
tecture is mainly adapted from the TEE Client API Specification [13]. At the
time of this writing, this is the publicly available part of the complete specifica-
tion. It is shown in Figure 1. The system architecture consists of two execution

Table 1. Mutual authentication protocol using symmetric AES encryption

Verifier B Prover A

shared key: k shared key: k
rB := rnd() rA := rnd()

connect()←−−−−−−−−−−−−−−
IDB , rB−−−−−−−−−−−−−−→

mA := h(rB ||rA||IDA)
IDA, rA, cA cA = E(mA, k)←−−−−−−−−−−−−−−

m′
A := h(rB ||rA||IDA)

cA
?
= E(m′

A, k)

mB := h(rA||IDB)
cB := E(mB , k) cB−−−−−−−−−−−−−−→

m′
B := h(rA||IDB)

cB
?
= E(m′

B , k)

domains, the trusted execution environment for the trusted applications and
the rich environment for the user controlled rich operating system1. It is much
more likely that the rich environment is infected by malware due to the greater
software complexity. The trusted applications are either executed in their own
virtual machine or are separated in different address spaces and do not share
any memory to allow the deployment of trusted application by different vendors
which may not trust each other. However, each trusted application depends on
the security of the underlying isolation layer.

3.2 Authentication Scheme

To keep the trusted computing base (TCB) small and to reduce implementation
complexity, the drivers and communication stacks are implemented in the rich
operating system executed in the untrusted domain. Thus, to achieve for exam-
ple authenticity of a transaction in an online banking application, a protocol
resistant to man-in-the-middle attacks has to be used. The protocol’s end point
has to be in the trusted domain and not in the rich OS since the rich OS could
be compromised. When the trusted application wants to communicate with its
backend system, it has to prove its authenticity against the backend and vice
versa. For this purpose, a mutual authentication protocol as shown in Table 1
between both parties needs to be employed. Note that this is only a simple exam-
ple authentication scheme and also more sophisticated authentication schemes
could be used. We assume that both parties have negotiated a secret symmetric
key. The protocol uses random nonces as challenges and AES with the shared se-
cret key k to generate the responses. Also an identifier of the particular sender is

1 A rich operation system is a full operating system with drivers, userland and user
interfaces, e. g., Android

Table 2. Timing attack on a trusted application

Untrusted VM

To/From remote To/From trusted
connect() connect()←−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−
IDB , rB IDB , rS−−−−−−−−−−−−−−→ startClk() −−−−−−−−−−−−−−→

IDA, rA, cA IDA, rA, cA←−−−−−−−−−−−−−− stopClk() ←−−−−−−−−−−−−−−
mA := h(rB ||rA||IDA)

...

included in the encrypted response. Before the execution of the encryption, this
ID is concatenated with the challenges. Further, this concatenation is hashed to
prevent concatenation attacks.

Both verifier and prover execute the mutual authentication protocol depicted
in Table 1. The prover in this case is the trusted application whereas the verifier
is a remote backend system. The untrusted domain is not taking part in the
protocol and just acts as transparent relay. After execution of this scheme, the
prover A has proven to the verifier B the knowledge of the secret k and vice
versa. Further, the freshness of the communication is provided by this scheme.
This simple mutual authentication is used to demonstrate the vulnerability of
virtualization-based trusted execution domains against the timing attack de-
picted in the next section.

4 Attack Setup

For our attack setup, we focus on a virtualization-based system architecture of
an embedded mobile device as stated above. In the following, we show that an
attacker who has overtaken the rich OS in the untrusted domain, e. g., by the
use of malware, can circumvent the isolation mechanism with a cache timing
side-channel.

Our introduced authentication scheme is secure against man-in-the-middle
attacks on protocol level. However, due to the fact that the untrusted domain
is relaying the messages between the client application and the remote server,
malware can use a time-driven cache attack to at least partially recover the
AES-encryption key k. To this end, we use a template attack derived from the
attack in [7] which is conducted in two phases, first the profiling phase (offline
and online) and second the correlation phase. We assume that an attacker has
gained access to the rich operating system. The attacker is then able to execute
a small attack process which is used to generate the timing profile.

4.1 Profiling Phase

The profiling phase is run twice, one time offline with a known key k and a second
time online on the real target with an unknown key k′. However, the malware

program which is running on the attacked system only has to generate the online
profile. The profiling phase in this context looks as follows. The attacker process
has to hook into the messaging system between rich OS and the trusted execution
environment as depicted in Table 2. Since the protocol stack is implemented in
the rich OS, this could be done in the rich OS kernel. Thus, the attacker is
able to capture the server’s challenge rB and measure the time between relaying
this challenge to the client and receiving the client’s response message. This
provides him the timing of the AES encryption of the known plaintext mA =
h(rB ||rA||IDA), of course with the noise introduced by the hashing and other
operations executed in addition to the actual encryption.

To recover the key in the later correlation phase, many challenge-response
observations are needed to deal with the noise by averaging over all samples.
Therefore, the attacker has to increase the number of challenge-response pairs
to be collected. For that, he has several options depending on the used implemen-
tation of the virtualization layer and the client application. In upcoming TEE
implementations, like the GlobalPlatform TEE, an untrusted user application
may be used to initiate the trusted application. Thus, malware could initiate the
trusted application as well and some kind of trigger application could be used
to initiate the authentication process of the trusted application. The following
connection request to the remote server can be blocked by the attacker as he has
full control over the untrusted rich operating system and thus can intercept any
communication. Instead of relaying the connection request to the remote server,
the attacker establishes a local fake connection and sends an own generated
nonce to the trusted application. After receiving the answer with the ciphertext,
the attacker can send a connection reset and depending on how the trusted ap-
plication is implemented, the protocol will just restart and a new challenge can
be sent.

4.2 Correlation Phase

After receiving sufficient challenge-response pairs for the online timing profile,
the attacker can correlate the profiles to recover at least partially the key k′. We
provide detailed measurement results in Section 5. We use a correlation based
on timing information during the first round of AES. It would be possible to also
use information from the second round to reduce the amount of samples needed.
However, to show that time-driven cache attacks are a threat to virtualization-
based systems, it is sufficient to use the easier first round attack.

At first we define the function timing() which computes the timing difference
between the start and end of an operation. During the first run of the profiling
phase, for each plaintext p, the overall encryption time is stored accumulated in
a matrix t which is indexed by the byte number 0 ≤ j < 16 and the byte value
0 ≤ b < 256.

tj,b = tj,b + timing(enc AES(p, k)) (1)

Further, the total amount of captured samples for each plaintext byte value is
traced in a matrix tnum as shown in Equation 2.

tnumj,b = tnumj,b + 1 (2)

After several samples the matrix v which is computed as depicted in Equation 3
is stored in the profile.

vj,b =
tj,b

tnumj,b
− tavg (3)

tavg shown in Equation 4 is the accumulated timing measurements of all plain-
texts pm divided by the total number of encryptions l.

tavg =

∑l
m=0 timing(enc AES(pm, k))

l
(4)

During the online part of the profiling phase, the matrices t′ and tnum′ are
generated and the output v′ is generated for the unknown key k′.

Finally, for every key byte j the correlation c for each possible value 0 ≤ u <
256 is computed as shown in Equation 5.

cj,u =

255∑
w=0

vj,w · v′j,(u⊕w) (5)

According to the probability which is derived from the variance also stored
in the profile, the values of c are sorted. Further, the key values with the lowest
probability below a threshold as defined in [7] are sorted out.

5 Empirical Results

For practical analyses of the above described use-case, we built a testbed based
on an embedded ARM SoC with an L4 microkernel as virtualization layer. As
hardware platform, we decided to use the beagleboard in revision c4 because it
is widely spread community driven open source board and also comparable to
the hardware of currently available smartphones, for instance the Apple iPhone
as well as Android smartphones. It is based on Texas Instruments’ OMAP3530
SoC which includes a 32-bit Cortex-A8 core with 720MHz as central processing
unit. The Cortex-A8 implements a cache hierarchy consisting of a 4-way set
associative level 1 and an 8-way set associative level 2 cache. The L1-cache is
split into instruction and data cache. The cache line size of both is 64 byte. For
precise timing measurement, we used the ARM CCNT register, which provides
the current clockcycles, the CPU spent since last reset. This is a standard feature
of the Cortex-A8 and thus also available in current smartphones. However, it
needs system privileges by default.

We implemented the scenario shown in Figure 1 and employed the mutual
authentication scheme from Table 1 in a trusted environment. For the virtual-
ization environment, we used the Fiasco.OC microkernel and the L4Re runtime

Trusted Application
(L4 Server)

Trusted Application
(L4 Server)

Linux Kernel
(L4 Client)

Linux Kernel
(L4 Client)

Fiasco.OC µKernelFiasco.OC µKernel

Trigger Application
(Linux Application)

Trigger Application
(Linux Application)

L4 Task L4 Task L4 Task

shmshm shmmemcpy

 enc_AES(p)
p

Timing shm

Rich Environment Trusted Environment

BeagleboardBeagleboard

Fig. 2. Linux trigger application (simulating malware) connecting through L4Linux
kernel services to trusted application executed as L4Server

environment from TUD’s Operating Systems group. Fiasco.OC is a capability-
based microkernel. In cooperation with the L4Re, it provides the functionality
of a hypervisor for paravirtualized Linux machines. Further, it enables real time
application and security applications to run directly on top of the microkernel
in separated address spaces (L4Tasks) besides the Linux VMs. In fact, the L4Re
virtualization runs Linux in user mode also in an L4Task. Further, each Linux
application is executed in its own L4Task, however, with a special restriction
that the L4Linux machine where the application belongs to is the registered
pager of that task.

The rich OS is simulated by an L4Linux system. In L4Re an IPC mechanism
in form of a C++ client server framework exists. This provides a synchronous
control channel. The trusted application is implemented as an L4Server while
the client part is implemented in the L4Linux kernel. A user level application is
implemented on top of the L4Linux kernel to trigger the authentication of the
trusted application. Instead of real challenges of a remote server, we also used
this trigger application to generate random nonces as server challenges. This
approach makes no difference to the timing measurement. The actual plaintext
data (the remote server’s nonce rB) is written to a shared memory page by the
client. The client, in our case the L4Linux kernel, requests this shared page in
advance from the trusted application. The trusted application L4Server registers
the page in the microkernel and transfers the capability for the page through
the established IPC control channel to the Linux kernel. A detailed view of
the software architecture of this attack is provided in Figure 2. As the rich
OS is running in user mode, it is necessary to enable the access to the CCNT
register beforehand in system mode. We used the boot loader u-boot to set this
instruction before the hypervisor is executed. However, if the TEE would be
realized for example with ARM TrustZone [3], the rich OS is executed in the so
called NormalWorld. The SecureWorld of the processor is used for the trusted
execution domain. An attacker could then access the CCNT register directly
from the rich OS kernel since access rights of the NormalWorld’s system mode
are sufficient.

5.1 Measurement Setup

The side-channel leakage depend on the used AES implementation. Thus, we
analyzed different AES implementations using our authentication protocol shown
in Table 1. During the profiling phase, we used the null key for the offline part
and for the online part we generated the randomly chosen key k′:

k′ = 0x 2153 fc73 d4f3 4a98 1733 bb3f 1892 008b

Further, we encrypt the plaintext generated by the trigger application directly
and do not perform the hashing operation as described in the protocol. The rea-
son for this is that the hashing generates more noise and makes the comparison
between the different AES implementations less clear. Nevertheless, we provide
the measurement result with the full protocol implementation exemplary for the
AES implementation of Bernstein [6]. However, noise is not really considered in
our work but clearly has an impact on the measurements.

We generate a profile every time when additionally 100K samples for each
possible plaintext byte value are observed until 2M of each such samples were
reached. To generate N samples for each possible value of all plaintext bytes,
approximately N · 256/16 messages with 16-byte random plaintexts have to be
observed.

5.2 Results

We evaluated a broad range of different AES implementations as shown in Ta-
ble 3. The implementations of Bernstein [6], Barreto [5] and OpenSSL [21] are
optimized for 32-bit architectures like the Cortex-A8 whereas Gladman’s [12] is
optimized for 8-bit micro controllers. Niyaz’ [18] implementation is totally unop-
timized. Table 3 visualizes the online and offline profile of each implementation.
The first column shows the minimum and maximum of the overall timing in
CPU cycles which is used for the correlation. The second column shows infor-
mation about the variation of this timing computed over all measurements. To
make propositions over the signal to noise ratio, we also provide the average
time spent in the AES encryption method. In Figure 3, the result of the corre-
lation is shown. The plots depict the decreasing possibilities for each key byte
by increasing samples. For each implementation, a subfigure is provided which
plots the left choices m with m ∈]0; 256] in z-direction for each key byte ki with
i ∈ [0; 15] from left to right, while the amount of samples N for the online profile
with N ∈ [100K; 2M] is plotted in y-direction from behind to front. For this
result, a constant sample amount of 2M was used for the offline profile with the
null key.

Barreto Barreto’s implementation which is part of many crypto libraries is
showing a high vulnerability against this time-driven attack. Barreto uses four
lookup tables, each of 1 KByte in size. Thus, the lookup tables do not fit into one
cache line. Additionally for the last round, a fifth lookup table is used. This type

key byte ki
02468101214

Sam
ple

s N

500000
1000000

1500000
2000000

re
m
a
in
in
g
c
h
o
is
e
s
m

0

50

100

150

200

(a) Barreto

key byte ki
02468101214

Sam
ple

s N

500000
1000000

1500000
2000000

re
m
a
in
in
g
c
h
o
is
e
s
m

0

50

100

150

200

250

(b) Bernstein

key byte ki
02468101214

Sam
ple

s N

500000
1000000

1500000
2000000

re
m
a
in
in
g
c
h
o
is
e
s
m

0

50

100

150

200

250

(c) Bernstein with hashing

key byte ki
02468101214

Sam
ple

s N

500000
1000000

1500000
2000000

re
m
a
in
in
g
c
h
o
is
e
s
m

0

50

100

150

200

250

(d) Gladman

key byte ki
02468101214

Sam
ple

s N

500000
1000000

1500000
2000000

re
m
a
in
in
g
c
h
o
is
e
s
m

0

50

100

150

200

250

(e) Niyaz

key byte ki
02468101214

Sam
ple

s N

500000
1000000

1500000
2000000

re
m
a
in
in
g
c
h
o
is
e
s
m

0

50

100

150

200

250

(f) OpenSSL

Fig. 3. Reducing key space by timing attack of different AES implementations

Table 3. Timing profile comparison between the different implementations

Implemenation
time (in cycles) variation time aes

min max min max median interval (in cycles)

Barreto [5]
offline 0 33745.96 33772.29 -9.57 16.77 -0.47 26.34 ≈ 4231

online k′ 33745.71 33772.31 -9.87 16.73 -0.49 26.59 ≈ 4230

OpenSSL [21]
offline 0 33584.26 33605.61 -8.04 13.31 -0.16 21.35 ≈ 4222

online k′ 33585.64 33607.81 -8.99 13.18 -0.14 22.17 ≈ 4221

Bernstein [6]
offline 0 33731.61 33778.54 -11.44 35.49 -0.94 46.93 ≈ 4546

online k′ 33745.04 33781.29 -5.24 31.00 -0.78 36.24 ≈ 4573

Gladman [12]
offline 0 35139.63 35158.00 -6.26 12.10 -0.16 18.37 ≈ 5689

online k′ 35139.48 35157.03 -5.72 11.82 -0.16 17.55 ≈ 5689

Niyaz [18]
offline 0 59266.99 59280.43 -8.39 5.05 0.03 13.44 ≈ 24840

online k′ 59265.01 59278.61 -8.88 4.72 0.01 13.60 ≈ 24834

of implementation is also called T-Tables implementation. After 100K samples,
only key byte 3 and 7 have more than 200 possibilities left and for key byte 9,
the choices are above 50. The other 13 key bytes are all below 50. After 800K
almost any key is pinpointed to 4 choices except key byte 9. However, this seems
to be the limit for this implementation. That means, using additional samples
do not improve the results any further. After 1.6M samples also for key byte 9
the limit is reached and only 4 choices are left. Nothing changes afterwards until
2M samples are reached. See Figure 3(a).

OpenSSL The OpenSSL implementation is almost the same as Baretto’s imple-
mentation. However, the results of both implementations differ. For the OpenSSL
implementation, the limit is reached at 16 choices per key byte. Furthermore,
the attack was not able to reduce the key space for key byte 4 at all. One could
believe that the results of Barreto’s implementation and the results of OpenSSL
have to be the same as the encryption function is exactly performing the same
operations. However, as listed in Table 3, the overall time which is measured
during the attack is about 200 cycles higher for Barreto’s implementation be-
cause of the encryption function definition. Barreto passes parameters by value
which are passed by reference in the OpenSSL encryption function header. Also
the performed operations outside the measurement in the trigger application in-
fluences the cache evictions. In total, this causes more cache evictions and thus
a higher variation of the AES signal, resulting in better correlation behaviour.

Gladman The same holds for the implementation of Gladman which we com-
piled with tables and 32-bit data types enabled. Here, also the choices for several
key bytes are reduced to 16 possibilities. However, Gladman uses only one 256-
byte lookup table which means the signal to noise ratio is even worse than in
the other implementations. Further, as the cache is 4-way associative with a
cache line size of 64 byte, the lookup table fits into one cache block at once.
This makes evictions by AES itself nearly impossible. However, other variables

used during the computation can compete with the same lines in cache. This
reduces the amount of cache evictions a lot in comparison to the 4 KByte tables
implementations. So, there is no reduction of the key space for four key bytes at
2M samples.

Niyaz The implementation of Niyaz seems almost secure against this attack
as shown in Figure 3(e). Niyaz also implements the AES with only one S-Box
table of 256 byte in size. As in Gladman’s implementation, this table also fits in
one cache block. Thus, the timing leakage generated by the S-Box lookups is re-
duced. Further, the unoptimized code beside the table lookups in the encryption
method will decrease the signal-to-noise ratio to make it even harder to extract
information from the measurements using the correlation.

Bernstein Our results show that Bernstein’s AES implementation is most vul-
nerable to our cache timing attack. However, we used the C compatibility version
which is part of his Poly1305-AES [6] message authentication code since no ARM
implementation is available. This implementation is the only one which totally
leaks the secret key k′. Already after 400K samples, the key is almost com-
pletely recovered by the correlation and only 2 key bytes need to be computed
using brute-force. Further, during the correlation phase, the possible key bytes
are sorted by probability, thus, already after 100K, the correct key k′ can be
extracted as shown in Table 4. The first column of Table 4 shows the possible
choices which are left after correlation. In the second column, the corresponding
key byte index is listed while the third column shows the key values sorted by
their probability. The values with highest probability are also the correct bytes
of k′ we introduced in this section. The correct values are printed bold in the
table. For this implementation, we also executed the attack with the full mu-
tual authentication protocol, with hashing enabled. We used the reference SHA1
implementation of the L4Re crypto package. In Figure 3(c), it can clearly be
seen that the additional noise generated by the hashing function increases the
amount of samples needed for the attack.

Table 4. Correlation results after 100K samples of online profile received with the C
version of Bernstein’s AES implementation; offline profile with 2M samples

choices byte# key values
←− probability

20 0 21 20 23 22 fc 25 26 ..
4 1 53 52 51 50

256 2 fc cb 9b a1 fd a6 a4 ..
80 3 73 70 76 71 75 74 72 ..
10 4 d4 d6 d5 d7 d3 0a df ..
4 5 f3 f1 f0 f2
6 6 4a 49 4b 48 4f 4d
3 7 98 9a 99

choices byte# key values
←− probability

23 8 17 15 ce c9 13 12 ca ..
27 9 33 31 32 ec ea 30 ed ..
4 10 bb b8 ba b9

27 11 3f 3e 3c 3b 3a e2 e5 ..
4 12 18 1b 19 1a

11 13 92 90 91 93 97 96 9a ..
51 14 00 c0 01 02 20 e9 21 ..

256 15 8b 06 93 8f 33 b3 0f ..

6 Conclusion

We have shown that the isolation characteristic of virtualization environments
can be circumvented using a cache timing attack. This is due to the cache archi-
tecture of modern CPUs. Even if authentication schemes with hashing are used,
the side-channel leakage of the cache can be used to significantly reduce the key
space. Nevertheless, our attack requires many measurement samples and noise
also makes our attack more difficult. As there are doubts about practicability of
this kind of attacks, further research has to examine proper workloads and real
noise. Indeed, cache timing attacks remain a threat and have to be considered
during design of virtualization-based security architectures. Switching the algo-
rithm for authentication would not be a solution to this problem. For instance,
there exist cache-based timing attacks against asymmetric algorithms like RSA
by Percival [17] and ECDSA by Brumley and Hakala [10] as well.

The first step to mitigate those attacks is to not use a T-Tables implementa-
tion. However, also the implementations of Gladman and Niyaz with the 256-byte
S-Box tables leak timing information which reduces the key space. Since there
are many samples needed for the time-driven attack, an attacker may not be
able to reconstruct the key within reasonable time. However, there are access-
driven attacks which only need several hundreds of samples [14] and even if these
attacks are not adaptable to the scenario in this paper yet, it may be possible
with further research. An additional option for implementations with a 256-byte
S-Box would be to use the preload engine in cooperation with the cache locking
mechanism of the Cortex-A8 processor, as the whole S-Box fits in a cache-set.
On a higher abstraction layer, the communication stack and all relevant proto-
col stacks and drivers could be implemented in the trusted domain. However,
this would increase the TCB significantly and thus also the probability to be
vulnerable to buffer-overflow attacks. Another solution would be to use a crypto
co-processor implemented in hardware. This could be either a simple micro con-
troller which does not use caching, or a sophisticated hardware security module
(HSM) with a hardened cache-architecture that provides constant encryption
timing.

References

1. Onur Acıiçmez and Çetin Koç. Trace-driven cache attacks on aes (short paper).
In Peng Ning, Sihan Qing, and Ninghui Li, editors, Information and Communica-
tions Security, volume 4307 of Lecture Notes in Computer Science, pages 112–121.
Springer Berlin / Heidelberg, 2006.

2. Onur Acıiçmez, Werner Schindler, and Çetin Koç. Cache based remote timing
attack on the aes. In Masayuki Abe, editor, Topics in Cryptology – CT-RSA 2007,
volume 4377 of Lecture Notes in Computer Science, pages 271–286. Springer Berlin
/ Heidelberg, 2006.

3. ARM Limited. ARM Security Technology - Building a Secure System using Trust-
Zone Technology, prd29-genc-009492c edition, April 2009.

4. Samuel A. Bailey, Don Felton, Virginie Galindo, Franz Hauswirth, Janne Hirvimies,
Milas Fokle, Fredric Morenius, Christophe Colas, and Jean-Philippe Galvan. The
trusted execution environment: Delivering enhanced security at a lower cost to the
mobile market. Technical report, GlobalPlatform Inc., 2011.

5. Paulo Barreto, Antoon Bosselaers, and Vincent Rijmen. Optimised ANSI C code
for the Rijndael cipher (now AES), 2000. http://fastcrypto.org/front/misc/

rijndael-alg-fst.c.
6. D. J. Bernstein. Poly1305-AES for generic computers with IEEE floating point,

February 2005. http://cr.yp.to/mac/53.html.
7. Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
8. Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke. Dif-

ferential cache-collision timing attacks on aes with applications to embedded cpus.
In The Cryptographer’s Track at RSA Conference, pages 235–251, 2010.

9. Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against aes. In
CHES’06, pages 201–215, 2006.

10. Billy Brumley and Risto Hakala. Cache-timing template attacks. In Mitsuru Mat-
sui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture
Notes in Computer Science, pages 667–684. Springer Berlin / Heidelberg, 2009.

11. Intel Corporation. Intel R© virtualization technology list. Website. http://ark.

intel.com/VTList.aspx accessed 2011 September 15th.
12. Brian Gladman, 2008. http://gladman.plushost.co.uk/oldsite/AES/

aes-byte-29-08-08.zip.
13. GlobalPlatform Inc. TEE Client API Specification Version 1.0, July 2010.
14. D. Gullasch, E. Bangerter, and S. Krenn. Cache Games – Bringing access-based

cache attacks on AES to practice. In IEEE Symposium on Security and Privacy –
S&P 2011. IEEE Computer Society, 2011.

15. Michael Neve, Jean pierre Seifert, and Zhenghong Wang. Cache time-behavior
analysis on aes, 2006.

16. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: the case of aes. In Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, pages 1–20. Springer-Verlag, 2005.

17. Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005, 2005.
18. Niyaz PK. Advanced Encryption Standard implementation in C.
19. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,

get off of my cloud: exploring information leakage in third-party compute clouds.
In Proceedings of the 16th ACM conference on Computer and communications
security, CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM.

20. Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and
Processes (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

21. The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS, February
2011. http://www.openssl.org.

22. TU Dresden Operating Systems Group. The Fiasco microkernel. Website. http:

//os.inf.tu-dresden.de/fiasco/ accessed April 6th 2011.

