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Abstract. We discuss an efficient combination of the cryptographic pro-
tocols adopted by the International Civil Aviation Organization (ICAO)
for securing the communication of machine readable travel documents
and readers. Roughly, in the original protocol the parties first run the
Password-Authenticated Connection Establishment (PACE) protocol to
establish a shared key and then the reader (optionally) invokes the Ac-
tive Authentication (AA) protocol to verify the passport’s validity. Here
we show that by carefully re-using some of the secret data of the PACE
protocol for the AA protocol one can save one exponentiation on the
passports’s side. We call this the PACE|AA protocol. We then formally
prove that this more efficient combination not only preserves the desir-
able security properties of the two individual protocols but also increases
privacy by preventing misuse of the challenge in the Active Authentica-
tion protocol. We finally discuss a solution which allows deniable au-
thentication in the sense that the interaction cannot be used as a proof
towards third parties.

1 Introduction

Through ISO/IEC JTC1 SC17 WG3/TF5 [ICA10] the International Civil Avia-
tion Organization (ICAO) has adopted the Password Authenticated Connection
Establishment (PACE) protocol [BSI10] to secure the contactless communica-
tion between machine-readable travel documents (including identity cards), and
a reader. Roughly, the protocol generates a secure Diffie-Hellman key out of a
low-entropy password which the owner of the passport has to enter at the reader,
or which is transmitted through a read-out of the machine-readable zone. The
Diffie-Hellman key is subsequently used to secure the communication. In [BFK09]
it has been shown that the PACE protocol achieves the widely accepted security
notion of password-based authenticated key agreement of Bellare-Pointcheval-
Rogaway [BPR00], in its strong form of Abdalla et al. [AFP05]. This holds under
a variant of the Diffie-Hellman assumption, assuming secure cryptographic build-
ing blocks, and idealizing the underlying block cipher and the hash function.

According to European endeavors, the PACE protocol should be followed by
the extended access control (EAC) authentication steps, called Chip Authen-
tication (CA) and Terminal Authentication (TA), with high-entropic certified



keys. This should ensure that access for either party is granted based on strong
cryptographic keys (i.e., not relying on low-entropy passwords only). The secu-
rity of the EAC protocols and of the composition with PACE has been discussed
in [DF10].

In the specifications of the ICAO 9303 standard [ICA06] for the border
control scenario, the normative document about machine-readable travel docu-
ments, however, only passive authentication of the passport is mandatory, where
the passport essentially merely sends its (authenticated) data. Active Authenti-
cation (AA) of the passport, implemented through a signature-based challenge-
response protocol, is only optional. If AA is not enforced this potentially allows
to bypass authentication through cloning of passports. Even if AA is used, then
the (plain) challenge-response protocol introduces a potential threat to privacy,
as discussed in [BSI10] (see also [BPSV08b,BPSV08a,MVV07]). Namely, if the
terminal can encode a time stamp or the location into the challenge, then the sig-
nature on that challenge can be used as a proof towards third parties about the
location or time of the border check. In this sense, the passport cannot deny this
interaction. This problem has been explicitly addressed in the European Chip
Authentication protocol (where a message authentication code for a shared key
is used for the challenge-response step instead).

Combining PACE and AA. We discuss that, on the chip’s side, we can re-use
some of the (secret) data in the PACE step for the AA step to save the exponen-
tiation for the signature in AA on the chip’s side, giving Active Authentication
(almost) for free.

To understand our technique, we need to take a closer look at the PACE
protocol. The PACE protocol first maps the short password to a random group
element through an interactive sub protocol Map2Point, followed by a Diffie-
Hellman key exchange step for this group element, and concludes with an au-
thentication step. While the latter steps are somewhat canonical, the Map2Point
step can be instantiated by different means and allows a modular design. The
most common instantiations are based on another Diffie-Hellman step (used
within the German identity card), or on hashing into elliptic curves as proposed
by Icart [Ica09] and Brier et al. [BCI+10]. The security proof for PACE [BFK09]
holds for general Map2Point protocols satisfying some basic security properties.

Our improvement works for the Diffie-Hellman based Map2Point protocol as
implemented on the German identity cards, for example, since the chip can re-use
its secret exponent from the Diffie-Hellman step of the Map2Point protocol. We
discuss two alternatives how to carry out the AA step with this exponent more
efficiently, one based on DSA signatures and the other one using Schnorr signa-
tures. We note that the idea applies more generally to other discrete-log based
signature schemes. The challenge in the new AA step is now the authentication
data sent by the terminal in the PACE step.

Security of the Combined Protocol. Whenever secret data is used throughout
several sub protocols great care must be taken in cryptography not to spoil the
security of the overall protocol. We thus show that sharing the data between the



PACE protocol and the new AA sub protocol preserves the desirable security
properties. More precisely, we show that:

– In the combined PACE|AA protocol we still achieve the security of a password-
based authenticated key exchange protocol (thus showing that the deploy-
ment of the randomness in the extra AA step does not violate the security
of the PACE protocol), and

– the overall protocol still authenticates the chip securely (in a high-entropy
sense), even when many executions of PACE|AA take place. To this end, we
define a strong security model for authentication, essentially only excluding
trivial attacks, e.g., if the adversary gets possession of the secret key, or
simply relays information in executions.

It follows that the PACE|AA protocol achieves the previous security standards
of the individual protocols but comes with a clear efficiency improvement. We
note that the underlying assumptions are essentially the same as for PACE and
AA, i.e., besides the common assumptions about secure encryption, signature,
and MAC algorithms, we reduce the security of the combined protocol to the
security of PACE (as an authenticated key-exchange protocol) and to a variant
of the security of Schnorr signatures resp. DSA signatures (where the adversary
now also gets access to a decisional Diffie-Hellman oracle and can decide upon
the message to be signed after seeing the first half of the signature).

A Deniable Schnorr Version. As explained before, for privacy reasons it may
be important that the terminal cannot derive a proof for others from the in-
teraction with the passport or identity card that an interaction took place. Put
differently, the protocol should provide deniable authentication [DDN00]. This
roughly means that the terminal could have generated its view in the protocol
itself from the public data, without communicating with the passport. This im-
plies that the passport holder can deny any actual interaction and claim the
terminal to have made up this conversation.

We note that the previously discussed signature based protocols do not sup-
port deniability. The reason is that the terminal could not have created the
signature under the passport’s key without the signing key —or without com-
municating with the actual chip. For the (ordinary) AA variant the terminal is
even allowed to encode any information in the challenge, in our improved com-
binations the challenge is “only” a MAC computed over data provided by the
passport and the shared Diffie-Hellman key. If this allows to encode information
depends on the MAC.

In contrast, our proposed deniable variant does not rely on Schnorr signa-
tures, but in some sense rather on the interactive Schnorr identification scheme
for honestly chosen challenges. This identification scheme is deniable because
one can simulate the interaction via the well-known zero-knowledge simulator.3

3 It is this property which is not known to work for the DSA case and why we restrict
ourself to the Schnorr scheme. Note also that Schnorr signatures are also some-
what simulatable but only if one programs the random oracle hash function; this,



Interestingly, our variant is essentially as efficient as the signature based one,
but comes with the advantage of deniability.

2 Security Model

We use the real-or-random security model of Abdalla et al. [AFP05] which ex-
tends the model of Bellare et al. [BPR00] for password-based key exchange proto-
cols. Due to space limitations, we refer the reader to [BFK09] for the description
of the attack model and security notion. Some changes are necessary, though,
because we now incorporate a long-term signing key of the chip. These minor
modifications follow next.

Attack Model. We consider security against active attacks where the adversary
has full control over the network, and the adversary’s goal is to distinguish
genuine keys from random keys in executions, which are picked independently of
the actual protocol run. This corresponds to the so-called real-or-random setting
[AFP05], a stronger model than the original find-then-guess model of [BPR00],
where the adversary can see several test keys (instead of a single one only).

In the attack, each user instance is given as an oracle to which an adversary
has access, basically providing the interface of the protocol instance (via the
usual Send, Execute, Reveal, and Test commands to send messages to parties, to
observe executions between honest parties, to reveal the session key, and to be
challenged for a test key). In addition, there exists a Corrupt oracle in the model
from [AFP05]. The adversary can gain control over a user during the execution by
issuing a Corrupt query with which the adversary obtains the secrets of an honest
party. For sake of convenience, here we split these queries into Corrupt.pw and
Corrupt.key queries, where the former reveals the password only and the latter
discloses the long-term key only (in case of a chip); in both cases, the other secret
remains private. Note that we now can model Corrupt queries by both queries
(since we work in the weak corruption model where the parties’ internal states
are not revealed upon corruption). An honest party gets adversarially controlled
if it does not have any secrets left (i.e., if the adversary issues both Corrupt query
types for a chip, or the Corrupt.pw query for the terminal).

The adversary can make the following queries to the interface oracles other
than these from [AFP05]:

Corrupt.pw(U) The adversary obtains the party’s password π.
Corrupt.key(U) The adversary obtains the party’s cryptographic key sk (if it

exists).

In addition, since the original PACE protocol was cast in the random oracle and
ideal cipher model where oracles providing a random hash function oracle and

however, is not admissible for the notion of deniability. We nonetheless still use a
hash function in the solution but use programmability only to show the unforge-
ablity/impersonation resistance property, not the deniability proof.



an encryption/decryption oracle are available, the attacker may also query these
oracles here. (We note that we only use the ideal cipher implicitly through the
reduction to the security to PACE.)

Partners, Correctness and Freshness. Upon successful termination, we assume
that an instance Ui outputs a session key k, the session ID sid, and a user ID pid
identifying the intended partner (assumed to be empty in PACE for anonymity
reasons but containing the chip’s certificate in the combined PACE|AA pro-
tocol). We note that the session ID usually contains the entire transcript of
the communication but, for efficiency reasons, in PACE it only contains a part
thereof. This is inherited here. We say that instances Ai and Bj are partnered
if both instances have terminated in accepting state with the same output. In
this case, the instance Ai is called a partner to Bj and vice versa. Any untam-
pered execution between honest users should be partnered and, in particular,
the users should end up with the same key (this correctness requirement ensures
the minimal functional requirement of a key agreement protocol).

Neglecting forward security for a moment, an instance (U, i) is called fresh
at the end of the execution if there has been no Reveal(U, i) query at any point,
neither has there been a Reveal(B, j) query where Bj is a partner to Ui, nor has
somebody been corrupted (i.e., neither kind of Corrupt query has been issued).
Else, the instance is called unfresh. In other words, fresh executions require that
the session key has not been leaked (by neither partner) and that no Corrupt-
query took place.

To capture forward security we refine the notion of freshness and further
demand from a fresh instance (U, i) as before that the session key has not been
leaked through a Reveal-query, and that for each Corrupt.pw(U)- or Corrupt.key(U)-
query there has been no subsequent Test(U, i)-query involving U , or, if so, then
there has been no Send(U, i,m)-query for this instance at any point.4 In this case
we call the instance fs-fresh, else fs-unfresh. This notion means that it should not
help if the adversary corrupts some party after the test query, and that even if
corruptions take place before test queries, then executions between honest users
are still protected (before or after a Test-query).

AKE Security. The adversary eventually outputs a bit b′, trying to predict the
bit b of the Test oracle. We say that the adversary wins if b = b′ and instances
(U, i) in the test queries are fresh (resp. fs-fresh). Ideally, this probability should
be close to 1/2, implying that the adversary cannot significantly distinguish
random keys from session keys.

To measure the resources of the adversary we denote by t the number of
steps of the adversary, i.e., its running time, (counting also all the steps required
by honest parties); qe the maximal number of initiated executions (bounded
by the number of Send- and Execute-queries); qh the number of queries to the

4 In a stronger notion the adversary may even issue a Corrupt.key command for the
user before the testing; Due to the entanglement of the PACE and the AA protocol
here our protocol does not achieve this, though.



hash oracle, and qc the number of queries to the cipher oracle. We often write
Q = (qe, qh, qc) and say that A is (t, Q)-bounded.

Define now the AKE advantage of an adversary A for a key agreement pro-
tocol P by

AdvakeP (A) := 2 · Prob[A wins]− 1

AdvakeP (t, Q) := max
{

AdvakeP (A)
∣∣∣A is (t, Q)-bounded

}
The forward secure version is defined analogously and denoted by Advake−fsP (t, Q).

Impersonation Resistance. This security property says that the adversary, in the
above attack, successfully impersonates if an honest reader in some session ac-
cepts with partner identity pid and session id sid, but such that (a) the intended
partner U in pid is not adversarially controlled or the public key in pid has not
been registered, and (b) no Corrupt.key command to U has been issued before
the reader has accepted, and (c) the session id sid has not appeared in another
accepting session. This roughly means that the adversary managed to imper-
sonate an honest chip or to make the reader accept a fake certificate, without
knowing the long-term secret or relaying the data in a trivial man-in-the-middle
kind of attack.

Define now the IKE advantage (I for impersonation) of an adversary A for a
key agreement protocol P by

AdvikeP (A) := Prob[A successfully impersonates]

AdvikeP (t, Q) := max
{

AdvikeP (A)
∣∣∣A is (t, Q)-bounded

}
Note that we do not need to define a forward secure version here.

3 The PACE|AA Protocol

In this section, we describe the PACE|AA protocol and both options for authen-
tication in the last message, i.e., active authentication (AA) via Schnorr and via
DSA. The deniable Schnorr variant and its security is addressed in Section 6.

3.1 Protocol Description

Figure 1 illustrates the PACE|AA protocol with both options of authentication
at the end. The scheme itself uses a block cipher C(Kπ, ·) : {0, 1}` → {0, 1}` and
a hash function H, with values 1, 2, . . . in fixed-length encoding prepended to
make evaluations somewhat independent.

The chip already holds a certificate certC for its public key XA under the au-
thorities’ public key pkCA, and (authenticated) group parameters G = (a, b, p, q, g, k)
describing a subgroup of order q, generated by g, of an elliptic curve for param-
eters a, b, p for security parameter k. We also note that, throughout the paper,



A : B :
password π password π
secret xA, public XA = gxA

certificate certC for XA, and pkCA pkCA
authenticated group parameters G = (a, b, p, q, g, k)

PACE
Kπ = H(0||π) Kπ = H(0||π)

choose s← {0, 1}` ⊆ Zq
z = Enc(Kπ, s)

G, z−−−−−−−−−−−−−−→ abort if G incorrect
s = Dec(Kπ, z)

choose yA ← Z∗q choose yB ← Z∗q
YA = gyA YB = gyB

YB←−−−−−−−−−−−−−−
abort if YB 6∈ 〈g〉 \ {1}

YA−−−−−−−−−−−−−−→ abort if YA 6∈ 〈g〉 \ {1}
h = Y yAB h = Y yBA
ĝ = h · gs ĝ = h · gs
choose y′A ← Z∗q choose y′B ← Z∗q
Y ′A = ĝy

′
A Y ′B = ĝy

′
B

Y ′B←−−−−−−−−−−−−−−

check that Y ′B 6= YB
Y ′A−−−−−−−−−−−−−−→ check that Y ′A 6= YA

K = (Y ′B)y
′
A K = (Y ′A)y

′
B

KENC = H(1||K) KENC = H(1||K)
K′SC = H(2||K) K′SC = H(2||K)
KMAC = H(3||K) KMAC = H(3||K)
K′MAC = H(4||K) K′MAC = H(4||K)
TA = MAC(K′MAC, (Y

′
B ,G)) TB = MAC(K′MAC, (Y

′
A,G))

TB←−−−−−−−−−−−−−−

abort if TB invalid
TA−−−−−−−−−−−−−−→

abort if TA invalid
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Version: Schnorr Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ = yA +H(5||YA, TB) · xA
Send(K′SC, (σ, certC))
−−−−−−−−−−−−−−→ recover and validate certificate

abort if gσ 6= YAX
H(5||YA,TB)
A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Version: DSA Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r = YA mod q

σ = y−1
A (H(5||TB) + rxA)

Send(K′SC, (σ, certC))
−−−−−−−−−−−−−−→ recover and validate certificate

w = σ−1

r = YA
v = gwH(5||TB) ·Xrw

A

abort if v 6= YA
key=(KENC,KMAC) key=(KENC,KMAC)
sid = (Y ′A, Y

′
B ,G) sid = (Y ′A, Y

′
B ,G)

pid = certC pid = certC

Fig. 1. The PACE|AA protocol (all operations are modulo q)

we use the multiplicative notation for group operations. It is understood that, if
working with elliptic curves, multiplications correspond to additions and expo-
nentiations to multiplications. Then the parties run the PACE protocol, with the
chip sending a nonce encrypted under the password, running the Diffie-Hellman
based Map2Point protocol to derive another generator ĝ on which another Diffie-



Hellman key exchange is then performed. In this Map2Point step the chip uses
some secret exponent yA to send YA = gyA . The parties in the PACE protocol
finally exchange message authentication codes TA,TB .

The idea is now roughly to re-use the secret exponent yA in the Map2Point
sub protocol on the chip’s side for the signature generation, and use the au-
thentication value TB of the terminal as the challenge on which the signature is
computed. The chip then sends its certificate (along with the missing signature
part) over the secure channel, via a Send command for the key K′SC derived from
the Diffie-Hellman exchange. The reader may think for now of the secure channel
as an authenticated encryption, but other channel instantiations work as well.

3.2 Instantiations

There are essentially two possible instantiations. One is based on the Schnorr
signature scheme [Sch90] where the chip uses the values yA and YA as the (private
resp. public) randomness and TB as the challenge for creating the signature under
its long-term signature key XA. We call this option Active Authentication via
Schnorr signatures. Alternatively, the chip card might prove its authenticity by
providing a DSA signature where again yA and YA are used as the randomness for
the signature generation [Kra95]. This version is called Active Authentication via
DSA signatures. We note that the computation of the final signatures requires
only modular multiplications (and, in case of DSA, an inversion) instead of
exponentiations.

4 Security Assumptions

As remarked above we carry out our security analysis assuming an ideal hash
function (random oracle model). Basically, this assumption says that H acts like
a random function to which all parties have access. We do not make any explicit
assumption about the cipher C here, but note that the security proof for PACE
in [BFK09] (to which we reduce AKE security to) relies on an ideal cipher.

4.1 Cryptographic Primitives

For space reasons, we omit the standard definitions of the cryptographic primi-
tives for message authentication, signatures, certificates, and for secure channels.
In the theorems’ statements, we denote by AdvattackS (t, Q) an upper bound on
an adversary running in time t (and making Q queries of the corresponding type)
and breaking the scheme S in an attack of type attack. For secure channels we
consider a simultaneous attack in which the adversary either tries to distinguish
messages sent through the channel or to successfully inject or modify transmis-
sions. We denote the adversary’s advantage in this case by AdvlorSC (t, Q).



4.2 Number-Theoretic Assumptions

Our proof for the AKE security of the PACE|AA protocol follows by reduction
to the security of the original PACE protocol (and from the security of crypto-
graphic primitives for the channel). For the IKE security against impersonators,
we nonetheless need two number-theoretic assumptions related to the Diffie-
Hellman resp. discrete-log problems. The first one is the gap Diffie-Hellman
problem [BLS01]. For a group G generated by g let DH(X,Y ) be the Diffie-
Hellman value Xy for y = logg Y (with g being an implicit parameter for the
function). Then the gap Diffie-Hellman assumption says that solving the com-
putational DH problem for (ga, gb), i.e., computing DH(ga, gb) given only the
random elements (ga, gb) and G, g, is still hard, even when one has access to a
decisional oracle DDH(X,Y, Z) which returns 1 iff DH(X,Y ) = Z, and 0 other-
wise. We let AdvGDH(t, qDDH) denote (a bound on) the value ε for which the
GDH problem is (t, qDDH , ε)-hard.

Furthermore, for the Schnorr signature based solution we rely on the following
version which (a) allows access to a decisional DH oracle for the forger, and
(b) considers access to a signer in an online/offline fashion in the sense that
the adversary may ask to see the public randomness part first before deciding
on a message to be signed. Still, the goal is to create a signature on a new
message for which the signing has not been completed. We note that the proof
in [PS00] for Schnorr signatures still holds, assuming that computing discrete-
logarithms relative to a DDH-oracle is hard. In particular, the hardness of this
“gap discrete-log problem” is implied by the GDH hardness. We call this security
notion robust unforgeability as it should still hold in presence of the DDH oracle
and the delayed message choice.

Definition 1 (Robust Unforgeability of Schnorr Signatures). The Schnorr
signature scheme is (t, Q, ε)-robustly-unforgeable with Q = (qR, qDDH) if for any
adversary A running in total time t, making at most qDDH DDH oracle queries
and at most qR init-queries to oracle O the probability that the following experi-
ment returns 1 is most ε:

pick G (including a generator g of prime order q)
pick sk← Zq and let pk = gsk

let (m∗, σ∗)← AO(sk,·),DDH(·,·,·)(G, g, pk) for σ∗ = (c∗, s∗)
where stateful oracle O upon input init picks r ← Zq and returns R = gr;

and upon input (complete, R,m) checks if it has returned R = gr to a
request init before, and if so, returns r +H(R,m)sk mod q;

output 1 iff c∗ = H(gs
∗
pkc
∗
,m∗) and m∗ was no input to a complete-query

We let Advr−forgeSchnorr(t, Q) be the maximal advantage for any adversary running
in time t, making in total Q = (qR, qDDH) queries.

As it turns out to be useful for our deniable version, we remark that the proof
of Pointcheval and Stern [PS00] holds as long as the input to the hash oracle
in the forgery is new, i.e., one can extract the discrete-logarithm of the public
key even if the hash function in signature requests is evaluated on quasi unique



inputs, and the forgery, too, uses a previously unqueried hash function input. For
the notion of signature unforgeability this holds because each signature request
uses a high-entropic random group element and the message m∗ in the forgery
cannot have been signed before. We take advantage of this fact for our deniable
version where we insert (Y ′A,G) instead of (R,m) into the hash function for the
random group element Y ′A chosen by the chip respectively, signer. We also show
that for the proof of impersonation resistance the adversary cannot re-use one of
these values (Y ′A,G) but needs to pick a new value Y ′A, thus showing the second
property.

For the DSA based solution, we require an analogous assumption which is
omitted here for space reasons and refer to the full version of this paper.

5 Security Analysis of PACE|AA

In this section, we discuss the security of the PACE|AA protocol when active
authentication is done via Schnorr signatures; the case of DSA signatures follows,
too, because we do not use any specific properties of the underlying signature
scheme (except for the robust unforgeability). That is, we assume that the chip,
holding public key XA = gxA with certificate certC , signs the message YB with
key xA and randomness YA. The signature is given by σ = yA + cxA mod q for
c = H(5||YA, TB). After the final authentication step of PACE, the chip sends
(using already a secure channel) the values σ and certC to the reader who verifies
the signatures and the certificate (and aborts in case one of the verification fails).

As noted in [BFK09] using the derived keys already in the key agreement
step does not allow for a proof in the Bellare-Pointcheval-Rogaway model. We
hence also use the variant that the keys K′SC and K′MAC are independent from
the keys output as the result of the key agreement.

5.1 Security as a Key Exchange Protocol

Theorem 1. The protocol PACE|AA (with Schnorr or DSA signatures) satis-
fies:

AdvakePACE|AA(t, Q) ≤ q2e
2q

+ AdvlorSC (t∗, qe, qe) + AdvakePACE(t∗, Q)

where t∗ = t+O(kq2e + kq2h + kq2c + k2) and Q = (qe, qc, qh).

We remark that the time t∗ covers the additional time to maintain lists and
perform look-ups. Since PACE is secure (under cryptographic assumptions) it
follows together with the security of the underlying encryption scheme that the
PACE|AA scheme is secure as well.

The idea of the proof is roughly that the additional Schnorr signature does not
violate the security of the underlying PACE protocol as it is encrypted. This is
shown through a reduction to the security of the original PACE protocol, mildly
exploiting the structure of the original proof in [BFK09] and the properties of



the Schnorr signature scheme. We roughly show that, in the PACE|AA protocol,
we can simulate the final transmission of the signature token by sending dummy
values through the channel, because the keys used to secure this transmission
are “as secure as” the PACE keys. That is, even though the strength of the keys
is only password-protected (i.e., one can try to guess the low-entropy password),
this is sufficient for our purpose, as we do not plan to be more secure than that.

Proof. The proof uses the common game-hopping technique, gradually taking
away adversarial success strategies and discussing that each modification cannot
contribute significantly to the overall success probability. Note that the original
proof of PACE in [BFK09] actually shows something stronger than indistin-
guishability of keys (from random). The proof rather shows that computing the
Diffie-Hellman key K in an execution is hard (unless one knows or has guessed
the password); key indistinguishability then follows from this. We will use this
more fine-grained view on the proof below and also consider the adversary on
the PACE|AA protocol in this regard, i.e., we measure its success probability
according to the probability of making a hash query about K in a Test session
(called target hash query).

Game 0: Corresponds to an AKE attack on the PACE|AA protocol (with the
more fine-grained success notion).

Game 1: Abort Game 0 if an honest chip would compute the same Diffie-Hellman
key in two executions.
Note that, since the honest chip always goes second for the Diffie-Hellman key
exchange step, sending Y ′A, the keys in such executions are random elements
and the probability that such a collision occurs is thus at most 1

2q
2
e/q.

Game 2: Change the previous game slightly such that, an honest chip when
sending the encrypted signature, instead picks and uses random and inde-
pendent (independent of the hash function output) keys K′SC.
Note that the only difference between the two cases can occur if the adversary
makes a target hash query since Reveal and Test sessions never output these
keys and Diffie-Hellman keys are distinct by the previous game. It follows
that the adversarial success can only decrease by the probability of making
a target hash query in this new game.

Game 3: Change the game once more and replace channeled transmissions of
the signatures sent by an honest chip by encryptions of 0-bits of the same
length and, at the same time, let any honest terminal reject any final message
unless it has really been sent by the honest chip in the same session.
Note that the length (of the signature part and the certificate) is known
in advance. Note also that the probability of making a target hash query
in Game 3 cannot be significantly larger, by the distinguishing advantage of
genuine transmissions from all-zero transmissions. To make this claim more
formally, assume that we mount an attack on the left-or-right security of the
(multi-user) encryption scheme by simulating the entire Game 2 with two
exceptions: (1) If an honest chip is supposed to send the signature and cer-
tificate, then we simply call the next transmission challenge oracle about the



signature part and the certificate and about an all-zero message of the same
length. Then the challenge bit of the left-or-right oracle corresponds exactly
to the difference between the two games. (2) If the adversary successfully
modifies the final transmission of an honest chip and the honest terminal
would accept the message, then this would also constitute a security breach
of the channel protocol. Hence, if the success probabilities of the adversary
dropped significantly, we would get a successful attacker against the secure
channel scheme.

The final game can now be easily cast as an attack on the original PACE protocol.
That is, if there was a successful attacker in Game 3 (making a target hash
query), then there was a straightforward attacker with the same probability in
the original PACE protocol: this attacker would run the Game 3-adversary and
simulate the additional signature steps itself (i.e., creating keys and certificates),
inject the values from the PACE protocol (i.e., relay the communication), but
send dummy values 0 . . . 0 through the channel on behalf of honest chips under
independent random keys. It follows that the probability of making a target hash
query in Game 3 is also bounded by the PACE security.

Given that no target hash query is made, the advantage in the final game
is now bounded from above by the advantage against PACE. Note that the
advantage of breaking PACE simultaneously covers both the case of target hash
queries and of breaks otherwise (such that we do not need to account for the
advantage of target hash queries and then of other breaks, resulting in a factor
2). ut

On Forward Security. Note that the PACE|AA protocol inherits the forward
security of PACE (when used as authenticated key exchange protocol). That
is, even if the adversary knows the password, then executions between honest
parties remain protected. Since the security of PACE|AA essentially reduces
to the security of PACE any successful attack against the forward security of
PACE|AA would yield a successful attack against PACE; the other protocol
steps do not violate this property.

5.2 Security against Impersonation

It remains to show that the protocol is IKE-secure. Here, we only rely on the
unforgeability of certificates and MACs and the robust unforgeability of the
Schnorr/DSA signature scheme.

Theorem 2. For the PACE|AA protocol (with Schnorr or DSA signatures) it
holds:

AdvikePACE|AA(t, Q)

≤ q2e + qeqh
q

+ AdvforgeCA (t∗, qe) + 2qe ·AdvforgeM (t∗, 2qe, 2qe)

+Advr−forge{Schnorr|DSA}(t
∗, qe)



where t∗ = t+O(kq2e + kq2h + k2) and Q = (qe, qh).

The idea is to show first that the adversary cannot inject its own unregistered
key (unless it breaks the unforgeability of the certification authority). Since any
successful attack must be then for an uncorrupt party whose secret signing key
was not revealed, it follows that the adversary must produce a signature under
the (registered) public key of an honest user. Because the session id must be new
and is somewhat signed via TB , it follows that the adversary must forge Schnorr
respectively DSA signatures in order to break the IKE property.

The formal proof appears in the full version of the paper.

6 A Deniable Schnorr Variant

Deniability basically demands that for any (possibly malicious) party on either
side, there exists a simulator S which produces the same output distribution as
the malicious party but without communicating with the honest party (but only
receiving the honest party’s public input and the malicious party’s secrets). This
implies that the malicious party could have generated these data itself, without
the help of the other party, and cannot use it as a proof towards a third party.

Since we work in the random oracle model, there is a peculiarity due to
the (non-)programmability of the hash function [Pas03]. Roughly, it is impor-
tant that the distinguisher (receiving either the view of the malicious party or
the simulated view) cannot distinguish these two random variables, even if it
gets access to the same random oracle as the parties and the simulator. The
distinguisher’s access to the same hash function prevents the simulator from
programming the hash values (as in the case for a real-world hash function).

We omit a formal definition of deniability (in the random oracle model) and
refer to [Pas03]. We note that there are even stronger versions, called online de-
niability [DKSW09] where the distinguisher can communicate with the malicious
party resp. the simulator while the protocol is executed. This notion, however,
is much harder to achieve and not known to work here.

Deniability of Our Protocol. Our deniable version of the Schnorr schemes works
as before, only that this time we hash (Y ′A,G) instead of TB . We call this proto-
col the deniable Schnorr-based PACE|AA protocol. Roughly, the idea is now that
the chip itself determines the challenge! Hence, given that the challenge can be
determined beforehand, and that it is created independently of the first signa-
ture step one can simulate the final signature part as in the interactive Schnorr
identification protocol [Sch91]. We only need to take care that the other security
properties are not violated through this.

Note that security as an AKE protocol follows as in the Schnorr signature
based version (with the very same bounds), even for such challenges, as discussed
after Definition 1. It suffices to show impersonation resistance —which follows
similar to the case of signatures, using the fact that the chip in the PACE
protocol already provides some form of authentication through the token TA—



and to show deniability. We note that our deniability simulator will actually need
some assistance in form of a decisional Diffie-Hellman oracle (which, for sake of
fairness, we then also give the adversary and the distinguisher). We comment
that this does not trivialize the task as such a decision oracle is not known to
help compute discrete logarithms, such that the simulator cannot simply derive
the chip’s secret key from the public key and use this key to show deniability.

We omit a formal treatment of these two properties but merely sketch how the
deniability simulator SH works for this case. More insights can be found in the
full version of this paper. The simulator only has access to the chip’s public key
XA, the group data, and the password since it is considered a secret input to the
terminal (but not the chip’s secret key). The simulator now proceeds as follows,
running a black-box simulation of the adversarial terminal (playing the honest
chip). In each execution, the simulator initially picks values yA, y

′
A ← Zq and

computes Y ′A = gy
′
A as well as c = H(Y ′A,G) and YA = X−cA gyA . Note that both

values are not computed according to the protocol description but still have the
same distribution. In particular, even though the simulator may not be able to
compute the shared Diffie-Hellman key K in the execution, it can later complete
the signature generation by setting s = yA (such that gs = YAX

H(Y ′A,G)). For
the other steps the simulator proceeds as the chip would, using knowledge of
the password. Only when the simulator receives TB from the malicious token, it
searches (with the decisional Diffie-Hellman oracle) in the list of hash queries of
the malicious terminal for queries about a key DH(Y ′A, Y

′
B). If no key is found,

then abort this execution (this means that the adversary must have forged a
MAC for an unknown key); else use the found key K to finish the execution
(using the signature tokens as computed above). If the adversary stops, then let
the simulator output the same value.
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