
Oblivious Decision Programs from Oblivious
Transfer: Efficient Reductions

Payman Mohassel and Salman Niksefat

1 University of Calgary
pmohasse@cpsc.ucalgary.ca

2 Amirkabir University of Technology
niksefat@aut.ac.ir

Abstract. In this paper, we design efficient protocols for a number of
private database query problems. Consider a general form of the prob-
lem where a client who holds a private input interacts with a server
who holds a private decision program (e.g. a decision tree or a branch-
ing program) with the goal of evaluating his input on the decision pro-
gram without learning any additional information. Many known private
database queries such as Symmetric PIR, and Private Keyword Search
can be formulated as special cases of this problem.

We design computationally efficient protocols for the above general prob-
lem, and a few of its special cases. In addition to being one-round and
requiring a small amount of work by the client (in the RAM model), our
protocols only require a small number of exponentiations (independent of
the server’s input) by both parties. Our constructions are, in essence, ef-
ficient and black-box reductions of the above problem to 1-out-of-2 obliv-
ious transfer. We prove our protocols secure (private) against malicious
adversaries in the standard ideal/real world simulation-based paradigm.

The majority of the existing work on the same problems focuses on opti-
mizing communication. However, in some environments (supported by a
few experimental studies), it is the computation and not the communica-
tion that may be the performance bottleneck. Our protocols are suitable
alternatives for such scenarios.

1 Introduction

The client/server paradigm for computation and data retrieval is arguably the
most common model for interaction over the internet. The majority of the ser-
vices currently provided over the web are laid out in this framework wherein
an often more resourceful entity (i.e. the server) provides its services to a large
pool of clients. The need for the client/server model is even more justified given
the widespread use of (small) mobile devices with varying computational and
storage capacities.

Most client-server applications, in one way or another, deal with personal
and/or sensitive data. Hence, it is not surprising that the protocols designed
in this model have been the subject of extensive study by the cryptographic

community. A few notable examples include private information retrieval and
its extensions [15, 9, 13], or the more recent effort on securely outsourcing com-
putation [10, 7].

Communication vs. Computation. Consider the problem of symmetric pri-
vate information retrieval (SPIR) [15, 5, 16]. SPIR refers to a PIR scheme with
the additional security requirement that the server’s database also be kept pri-
vate. The majority of the research on this problem is focused on improving the
communication complexity, because communication between the client and the
server is often considered to be the most expensive resource. Despite achieving
this goal, other barriers continue to limit realistic deployment of SPIR schemes;
the most limiting of which is computation. In particular, while servers often have
higher computational resources, they also need to serve a large pool of clients;
consequently, even a small increase in the computation of the server for a single
run of the protocol, negatively affects its overall performance. Furthermore, a
number of experimental studies [24, 22] conclude that, in many network setups
where private database queries are likely to be deployed, it is the computation
(and not the communication) that might be the performance bottleneck.3

Unfortunately, given the security requirements for SPIR schemes (or even
PIR), it is possible to show that the server’s work has to be at least linear in
the size of his database (e.g. see [3]). Hence, there is no hope of achieving better
asymptotic efficiency. Nevertheless, the type of operations (e.g. asymmetric vs.
symmetric-key) the server performs has a significant effect on the efficiency of the
resulting scheme. This is particularly important in real applications since based
on existing benchmarks (e.g. http://bench.cr.yp.to) asymmetric operations (e.g.
exponentiation) require several thousand times more cpu cycles compared to
their symmetric-key counterparts. In all the constructions we are aware of for
SPIR, except for one, the number of exponentiations the server has to perform
is at least linear in the size of his database. The exception is the construction of
Naor and Pinkas [19, 21], who studied the problem under the different name of
1-out-of-N oblivious transfer (OTN1).

The situation, however, is not the same for most of the generalized vari-
ants of SPIR. A number of generalizations and extensions to SPIR have been
studied in the literature. Examples include private keyword search [6, 9], private
element rank [8], and even more generally, the problem of oblivious decision
tree, and branching program evaluation [13, 4]. The existing solutions for these
problems often require a number of public-key operations that is proportional
to the server’s input size and hence are not computationally efficient for use in
practice. The only exception (with a small number of asymmetric operations) is
Yao’s garbled circuit protocol which is unsuitable for our applications due to its
high computational cost for the client (see the related work section for a more
detailed discussion).

Why OT extension does not solve the problem. OT extension techniques (e.g.
[12]) are often used to reduce the number of asymmetric operations in crypto-

3 The experimental studies we cite here, focus on PIR but the implications are even
more valid for SPIR schemes.

graphic constructions. They allow one to reduce the computation needed for a
large number (n) of 1-out-of-2 OTs, to k such OTs, and O(n) symmetric-key
operations, where k is the security parameter. This yields significant savings
when n is large. One may wonder whether similar techniques can be applied
to the existing solutions for the problems we are studying in order to reduce
their computation. Specifically, the constructions of [15, 13] can be seen as eval-
uation of many OTs which makes them suitable candidates for OT extension.
These constructions, however, require additional properties from the underlying
OT such as (i) short OT answers since the OT protocol is applied in multi-
ple layers and (ii) a strongness property which requires the OT answer not to
reveal the corresponding OT query (see future sections for more detail). Unfortu-
nately, the existing OT extension techniques do not preserve either one of these
properties and hence cannot be used to improve the computational efficiency
of these solutions. Designing new extension techniques that preserves the above
two properties is, however, an interesting research question.

In this work, we propose new and efficient protocols for oblivious tree and
branching program evaluation which possess the following four efficiency prop-
erties:

- The number of exponentiations by both the client and the server is indepen-
dent of the size of the server’s input.

- The client’s total computation is independent of the size of the server’s input.
- Our protocols are black-box constructions based on OT 2

1 and a PRG, and
hence can be instantiated using a number of assumptions.

- The protocols are non-interactive (one round) if the underlying OT 2
1 is.

RAM model of computation. When measuring client’s computation in our
protocols, we work in the RAM model of computation where lookups can be
performed in constant time. In particular, even though the server communicates
a somewhat large (proportional to the size of the program) encrypted decision
program to the client, client only needs to lookup a small number of values and
perform computation only on those values.

Next, we review our protocols in more detail.

1.1 Overview of Protocols

Oblivious evaluation of trees. Our first protocol deals with secure evaluation
of arbitrary decision trees that are publicly known by both the client and the
server, but where the input to the decision tree is only known to the client and
the labels of the terminal nodes are only known to the server. This problem has
a number of interesting applications. For example, 1-out-of-N oblivious transfer
can be seen as an instance of this more general problem. In fact, our protocol
yields a new and more efficient 1-out-of-N OT, that reduces the number of
symmetric-key operations needed by the scheme of [19] from O(N logN) to
O(N), while maintaining the same asymmetric (O(logN)) and communication
(O(kN)) complexities.

Hiding the tree structure. Our first protocol mentioned above hides the leaf
labels but assumes that the decision tree itself is public. We apply a number of
additional tricks to hide all the structural information about the decision tree
(except for its size), without increasing the computational cost for the client
or the server. Once again, the resulting protocol preserves the above-mentioned
efficiency properties. Unlike our first protocol, for this construction we need a
OT 2

1 protocol with the slightly stronger security property that, the OT answers
are not correlated with their corresponding queries. This notion of security for
OT and its instantiation based on standard assumptions has already been studied
by Ishai and Paskin [13] (see section 2.3).

Extension to branching programs. Finally, at the cost of a slightly higher number
of OTs (though still independent of the size of the program), we extend the
protocol from decision trees to decision programs (branching programs). The
difficulty is to make sure the number of occurrences of a single variable during
the evaluation of an input by the program is not revealed to the client. For
decision trees, this number is always one, but for decision programs, it can be
an arbitrary value.

Our protocols all follow the common paradigm of having the server encrypt
his database/decision tree/branching program using a set of random strings;
sending it to the client; and then engaging in a small number of OT 2

1 protocols
such that the client learns enough keys to evaluate his input on the encrypted
program and learn the output but nothing else. The main challenge is to devise
an encryption strategy that is secure and at the same time allows our protocols
to have the efficiency properties we are after.

We prove our protocols secure in the ideal/real world simulation paradigm.
We also discuss how our new protocols yield computationally efficient construc-
tions for a number of well-studied problems in the literature such as 1-out-of-N
OT and private keyword search.

1.2 Related Work

There are a number of works that study the problem of oblivious decision pro-
gram evaluation. In [13], a one-round protocol for oblivious branching program
(BP) evaluation is proposed. This protocol hides the size of the BP as well as its
structure. Although the number of client exponentiations are O(n) and hence
proportional to the size of its input, the number of exponentiations by the server
is linear in the size of the BP which makes the protocol computationally quite
expensive. This protocol was slightly improved in [17], where a more communica-
tion efficient protocol but with the same computational complexity is designed.

In [4] Yao’s garbled circuit protocol is used in conjunction with homomorphic
encryption and oblivious transfer to solve the problem of oblivious BP evaluation
(with the application of remote diagnostic programs). This protocol has O(|V |)
rounds and requires O(|V | + n) exponentiations on the client side and O(|V |)
exponentiations at server side where |V | is the size of the program and n is
the size of client’s input. This protocol was later generalized and improved in

[2] but the number of server’s exponentiation is still dependent on |V |. These
constructions, however, consider a more general form of BP where the decision
nodes contain an attribute index as well as a threshold value which is used to
decide whether to go left or right n next.

Using fully homomorphic encryption schemes. The problem of oblivious tree/
branching program evaluation can also be solved using the recent fully homo-
morphic encryption schemes [11]. The problem with such a solution is its high
computation cost as the number of times the corresponding public-key encryp-
tion scheme is invoked is at least linear in the tree/branching program size and
its input.

Using Yao’s garbled circuit protocol. It is also possible to use Yao’s garbled
circuit protocol to implement oblivious tree and branching program evaluation.
One party’s input to the circuit is his input string while the other party’s input
is the tree/branching program itself. However, Yao’s protocol is not well-suited
for the client/server model of computation since both parties have to perform
work that is proportional to the size of the circuit, and the circuit in this case is
at least linear in size of the program, and its input. In particular, in Yao-based
solutions, the client ends up doing work that is proportional to the size of the
server’s input which does not meet our efficiency criteria.

We give a more detailed comparison of efficiency between our protocol and
the existing solutions including the one based on Yao’s garbled circuit protocol
in Table 1.

2 Preliminaries

In this section, we introduce the notations, decision program definitions and the
primitives we use throughout the paper. Readers can refer to the full version [18]
for the security definitions we work with.

2.1 Notations

We denote by [n] the set of positive integers {1, . . . , n}. We use
$← to denote

generation of uniformly random strings.
Throughout the paper, we use k to denote the security parameter. We denote

an element at row i and column j of a matrix by M [i, j]. Vectors are denoted by
over-arrowed lower-case letters such as v. We use a||b to denote the concatenation
of the strings a and b.

We denote a random permutation function by Perm. v ← Perm(V) takes as
input a set of integers V = {1, . . . , |V |}, permutes the set uniformly at random
and returns the permuted elements in a row vector v of dimension |V |.

2.2 Decision Trees and Branching Programs

Below we define decision trees and branching programs, two common models for
computation which are also the main focus of this paper. Note that we only give

one definition below for both models under the name of decision programs. If the
directed acyclic graph we mention below is a tree, then we have a decision tree
and otherwise we have a branching program. The description and the notations
are mostly borrowed from [13].

Definition 1 (Decision Program (DP)) A (deterministic) decision program
over the variables x = (x1, . . . , xn) with input domain I and output domain O
is defined by a tuple (G = (V,E), v1, T, ψV , ψT , ψE) where:

– G is a directed acyclic graph (e.g. a binary tree as a special case). Denote by
Γ (v) the children set of a node v.

– v1 is an initial node of indegree 0 (the root in case of a tree). We assume
without loss of generality that every u ∈ V − {v1} is reachable from v1.

– T ⊆ V is a set of terminal nodes of outdegree 0 (the leaves in case of a tree).
– ψV : V −T → [n] is a node labeling function assigning a variable index from

[n] to each nonterminal node in V − T .
– ψT : T → O is a node labeling function asigning an output value to each

terminal node in T .
– ψE : E → 2I is an edge labeling function, such that every edge is mapped to

a non-empty set, and for every node v the sets labeling the edges to nodes in
Γ (v) form a partition of I.

In this paper, for simplicity, we describe our protocols for binary decision pro-
grams. But, it is easy to generalize our constructions to t-ary decision protocols
for arbitrary positive integers t.

Definition 2 (Binary DP) A binary decision program is simply formed by
considering I = {0, 1}. Also for simplicity instead of the children set function Γ ,
we define ΓL(v) and ΓR(v) which output the variable indices of the left and right
children of v. Since edge labeling are fairly obvious for binary decision programs,
we often drop ψE when discussing such programs.

Definition 3 (Layered DP) We say that P = (G = (V,E), v1, T, ψV , ψT , ψE , ψ`)
is a layered decision program of length ` if the node set V can be partitioned into
` + 1 disjoint levels V = ∪`i=0Vi, such that V1 = {v1}, V`+1 = T , and for every
e = (u, v) we have u ∈ Vi, v ∈ Vi+1 for some i. We refer to Vi as the i-th level of
P . Note that we also introduced the function ψ` : V → [`] which takes a vertex
as input and returns its level as output.

How to evaluate a DP. The output P (x) of a decision program P on an input
assignment x ∈ In is naturally defined by following the path induced by x from
v1 to a terminal node v`, where the successor of node v is the unique node v′ such
that xψV (v) ∈ ψE(v, v′). The output is the value ψT (v`) labeling the terminal
node (leaf node) reached by the path.

Parameters of a DP. Let P = (G = (V,E), v1, T, ψV , ψT , ψE) be a decision
program. The size of P is |V |. The height of a node v ∈ V , denoted height(v),
is the length (in edges) of the longest path from v to a node in T . The length of
P is the height of v1.

2.3 Oblivious Transfer

Our protocols use Oblivious Transfer (OT) as a building block. Since we focus on
protocols that run in a single round, we describe an abstraction for one-round
OT protocols here [13]. A one-round OT involves a server holding a list of t
secrets (s1, s2, . . . , st), and a client holding a selection index i. The client sends
a query q to the server who responds with an answer a. Using a and its local
secret, the client is able to recover si.

More formally, a one-round 1-out-of-t oblivious transfer (OT t1) protocol is
defined by a tuple of PPT algorithms OT t1 = (GOT,QOT,AOT,DOT). The pro-
tocol involves two parties, a client and a server where the server’s input is a
t-tuple of strings (s1, . . . , st) of length τ each, and the client’s input is an index
i ∈ [t]. The parameters t and τ are given as inputs to both parties. The protocol
proceeds as follows:

1. The client generates (pk, sk)← GOT(1k), computes a query q ← QOT(pk, 1t, 1τ , i),
and sends (pk, q) to the server.

2. The server computes a← AOT(pk, q, s1, . . . , st) and sends a to the client.
3. The client computes and outputs DOT(sk, a).

In the case of semi-honest adversaries many of OT protocols in the literature
are one-round protocols [1, 20, 14]. In case of malicious adversaries (CRS model),
one can use the one-round OT protocols of [23].

Strong Oblivious Transfer When OT is invoked multiple times as a sub-
protocol, sometimes it is crucial for the security of the protocol that the receiver
(i.e. client) be unable to correlate OT answers with their corresponding queries.
In particular, when the client receives an OT answer, he should not determine
which OT query the answer belongs to.

This property can be formalized by requiring the distribution of the answer
a conditioned on the output si to be independent of the query q. More formally,

Definition 4 (Strong OT Property [13]) An OT protocol is said to have the
strong OT property if there exists an expected polynomial time simulator SimOT

such that the following holds. For every k, t, τ, i ∈ [t], pair (pk, q) that can be
generated by GOT,QOT on inputs k, t, τ, i, and strings s0, ..., st−1 ∈ {0, 1}τ , the
distributions AOT(pk, q, s1, ..., st) and SimOT(pk, 1t, si) are identical.

Some implementations of one-round OT based on homomorphic encryption
schemes [15, 13] satisfy this strongness property.

3 Secure Evaluation of Binary Decision Trees

In this section we propose a new protocol for secure evaluation of any publicly
known decision tree with privately held terminal nodes on private inputs. This
problem has a number of interesting applications such as an improved OTN1
protocol which is described in Section 6.

Protocol Overview. Our first protocol deals with secure evaluation of arbitrary
decision trees (P = ((V,E), v1, T, ψV)) that are publicly known by both the
client and the server, but where the input to the decision tree (X = x1x2 . . . xn ∈
{0, 1}n) is only known to the client and the labels of the terminal nodes (ψT)
are only known to the server.

The Protocol 1

Shared Inputs: The security parameter k, and
a binary decision tree P = ((V,E), v1, T, ψV)

with O = {0, 1}k (note the missing ψT). Par-
ties also agree on a 1-out-of-2 OT protocol
(GOT,QOT,AOT,DOT) and a PRG G : {0, 1}k →
{0, 1}2k.

Server’s Input: The terminal node labeling func-
tion ψT .

Client’s Input: A bitstring X = x1x2 . . . xn ∈
{0, 1}n.

1. The client encrypts his inputs using OT
queries, and sends them to the server.

Client computes (pk, sk)← GOT(1k)
for 1 ≤ i ≤ n do

Client computes qi ← QOT(pk, 12, 1k, xi)
end for
Client sends pk and q = (q1, q2, . . . , qn) to
Server.

2. Server computes the OT answer vector
a.

for 1 ≤ i ≤ n do

(K0
i , K

1
i)

$← {0, 1}k

ai ←AOT(pk, qi, K
0
i , K

1
i)

end for
a← (a1, a2, . . . , an)

3. Server prepares the Encrypted Vertex

Vector
−−−→
EV V .

- Server generates a random
pad vector PAD of length
|V |:

for i = 1 to |V | do

PAD[i]
$← {0, 1}k

end for

- Server encrypts the non-terminal
nodes:

for i ∈ V − T do
EncL = K0

ψV (i) ⊕ PAD[ΓL(i)]

EncR = K1
ψV (i) ⊕ PAD[ΓR(i)]

EV V [i]←G(PAD[i])⊕ (EncL||EncR)
end for

- Server encrypts the labels of the terminal
nodes:

for i ∈ T do
EV V [i]← PAD[i]⊕ ψT (i)

end for

4. Server sends (a, PAD[1],
−−−→
EV V) to the

client.

5. Client retrieves the keys and
computes the final output.

node← 1
pad← PAD[1]
while node /∈ T do

EncL||EncR
parse←− EV V [node]⊕G(pad)

i← ψV (node)
K
xi
i ← DOT(sk, ai)

if (xi = 0) then
newpad← K0

i ⊕ EncL
newnode← ΓL(node)

else
newpad← K1

i ⊕ EncR
newnode← ΓR(node)

end if
pad← newpad
node← newnode

end while
Client outputs (pad ⊕ EV V [node]) as his
final output.

In our protocol, a pair of random keys (K0
xi ,K

1
xi) is generated for each xi, and

is used by the server as his input in the n 1-out-of-2 OTs. The idea is then to
generate a set of random pads, one for each node in the decision tree. Each node
stores a pair of values, i.e. the two random pads corresponding to its left and
right children. However, this pair of values is not stored in plaintext. Instead, the
left (right) component of the pair is encrypted using a combined key formed by
XORing the left-half (right-half) of the expanded pad (expanded using a PRG)
for the current node with K0

xi (K1
xi) where i is the label of the current node. The

encryption scheme is a simple one-time pad encryption. The encrypted values

are stored in a vector we call the Encrypted Vertex Vector (
−−−→
EV V).

The client who receives one of each pair of random keys, can then use them
to decrypt a single path on the tree corresponding to the evaluation path of

his input X, and recover his output, i.e. the output label associated with the
reached terminal node. As we show in the proof, the rest of the terminal node
labels remain computationally hidden from the client. A detailed description of
the protocol is depicted in the box for the protocol 1.

Security. In the full version of the paper [18] we show that as long as the
oblivious transfer protocol used is secure even when executed in parallel, so is
our construction given above. Particularly, if the OT is secure against malicious
(semi-honest) adversaries (when run in parallel), protocol 1 described above is
also secure against malicious (semi-honest) adversaries. The following Theorem
formalizes this statement.

Theorem 1 In the OT-hybrid model, the above protocol is fully-secure (i.e.
simulation-based security: see the definition in Appendix B of the full version
[18]) against malicious adversaries.

Complexity. The proposed protocol runs in one round which consists of a
message from the client to the server and vice versa.

The only asymmetric computation required in this protocol is for the OT in-
vocations and since there are n OT invocations and each OT requires a constant
number of exponentiations, the number of exponentiations is O(n) for both par-
ties. Using the OT extension of [12] we can reduce the number of exponentiations
to O(k) for both parties.

The number of other (symmetric-key) operations such as PRG invocations,
and XORing is O(|V |) on the server side and O(l) on the client side where l
refers to the depth of the tree (l ≤ n).

The communication complexity of the protocol is dominated by the total size

of the elements in
−−−→
EV V which is bounded by O(|V |k) where k is the security

parameter. This is due to the fact that each element of
−−−→
EV V is of size 2k and

there are |V | such elements.

4 Hiding the Tree Structure

We will show how to securely formulate via decision programs, other proto-
cols such as the private keyword search problem [6, 9] and the private element
rank problem [8] (see the full version for discussion on the latter). For some of
these problems, privacy of the server’s database critically relies on keeping the
structure of the corresponding decision program private. The program structure
includes all the information available about it except for its size (number of its
nodes) and the number of variables (both of which are publicly known).

For simplicity, in this section we assume that the decision tree we work with
is layered. Alternatively, we could allow for arbitrary tree structures4 and then
consider the length of the evaluation path as public information available to our
simulators (our protocol reveals the length). However, since in most applications

4 In a non-layered decision tree, the length of the evaluation path for different inputs
need not be the same.

one wants to keep this information private (see Section 6), we chose to work
with this assumption instead. Note that there are generic and efficient ways of
transforming any decision program (tree) into a layered one. In section 6, we give
a customized and more efficient transformation for the private keyword search
application.

Next, we show how to enhance the protocol of previous section in order to
hide the decision tree’s structure without increasing the computational cost of
the client or the server (in the next section we extend this to decision programs).
Once again, our protocol reduces the problem to n OT 2

1 protocols.

Here we require the OT 2
1 protocol to have a slightly stronger security prop-

erty compared to the standard one. We refer to such OTs as strong OTs. At
a high level, we require that the OT answers do not reveal anything about the
corresponding query. This property helps us hide from the client, the order in
which the input variables are evaluated which would in part reveal some infor-
mation about the structure of the tree. A formal definition of security as well as
some existing constructions for strong OT are discussed in section 2.3.

An Overview. The high level structure of the protocol of this section is
similar to the previous one. In particular, we still perform n OTs and use a
set of key pairs and random pads in order to garble the tree. But since this
time we are also interested in hiding the structure of the tree, a more involved
encryption process is necessary. The main changes to the previous construction
are as follows: first, instead of revealing the labels of the non-terminal nodes to
the client, we use a pointer (index) to the corresponding item in the randomly
permuted list of OT answers (a′). In order for the permuted list of answers not to
reveal the permutation, we need to use a strong OT protocol. Second, in order to
hide the arrangement of the nodes in the tree, instead of revealing the outgoing
edges of each non-terminal node, we use two pointers to the corresponding nodes

in a randomly permuted list of the nodes in the tree (
−−−→
EV V).

The three pointers mentioned above (one pointing to a′ and two pointing

to
−−−→
EV V) stored at each node, is all that the client needs in order to evaluate

the decision tree on his input. All of this information will be encrypted using a
combination of the random pads and the key pairs similar to the construction

of previous section and is stored in the
−−−→
EV V vector. However, several subtleties

exist in order to make sure the construction works. First, only the random pads
(not the random keys) are to be used in encrypting the pointers to the OT an-
swers since the random keys themselves are retrieved from the OT answers. Also,
in order to hide from the client which bit value the retrieved key corresponds to
(note that this can reveal extra information about the node labels which are to
be kept private), the two values encrypted using the keys (EncL and EncR) are
randomly permuted and a redundant padding of 0k is appended to the values be-
fore encryption to help the client recognize when the correct value is decrypted.
A detailed description of the protocol is depicted in the box for protocol 2.

In the description above, the size of EVV for terminal vs. non-terminal nodes
is different which leaks the total number of terminal nodes. However, we only did
so to make the description of the protocol simpler. In particular, it is easy to pad
the size of terminal nodes to the appropriate size, and then embed an indicator

bit in each EVV cell (before encryption) that helps the client determine if he
has reached a terminal node.

The Protocol 2

Shared Inputs: The security parameter k, size of
the set V , i.e. |V |. We also let k′ = 2k + log(|V |).
Parties also agree on a strong OT 2

1 proto-
col OT = (GOT,QOT,AOT,DOT) and a PRG

G : {0, 1}k → {0, 1}2k
′+logn.

Server’s Input: A layered binary decision tree
P = ((V,E), v1, T, ψV , ψT) with O = {0, 1}k.

Client’s Input: A bitstring X = x1x2 . . . xn ∈
{0, 1}n.

1. Client encrypts his inputs using OT
queries, and sends the vector q to
Server. The first step of computing the OT
queries for the client is identical to protocol
of Section 3 and hence is omitted here.

2. Server computes a permuted OT answer
vector a′.

- Server computes the OT answer vector
a:

for 1 ≤ i ≤ n do

(K0
i , K

1
i)

$← {0, 1}k
′

ai ←AOT(pk, qi, K
0
i , K

1
i)

end for
a← (a1, a2, . . . , an)

- Server Generates a random
permutation vector PERn:

PERn ← Perm({1, ..., n})
- Server Permutes a using PERn:

for 1 ≤ i ≤ n do
a′[PERn[i]]← a[i]

end for

3. Server computes an encrypted vertex

vector
−−−→
EV V .

- Server generates a random
pad vector PAD of length
|V |:

for i = 1 to |V | do

PAD[i]
$← {0, 1}k

end for

- Server Generates a random
permutation vector PERV :

PERV ← Perm({1, ..., |V |})
- Server encrypts non-terminal

nodes and their outgoing edges:

for i ∈ V − T do
EncL ← K0

ψV (i)⊕
(PAD[ΓL(i)]||PERV [ΓL(i)]||0k)

EncR ← K1
ψV (i)⊕

(PAD[ΓR(i)]||PERV [ΓR(i)]||0k)

b
$← {0, 1}

if b = 0 then
EV V [PERV [i]]← G(PAD[i])⊕

(PERn[ψV (i)]||EncL||EncR)
else
EV V [PERV [i]]← G(PAD[i])⊕

(PERn[ψV (i)]||EncR||EncL)
end if

end for

- Server encrypts the labels of the terminal
nodes:

for i ∈ T do
EV V [PERV [i]]← PAD[i]⊕ψT (i)

end for

4. Server sends (PERV [1], PAD[1], a′,
−−−→
EV V) to Client.

5. Client retrieves the keys and computes
the final result.

node← PERV [1]
pad← PAD[1]
while node /∈ T do

(j||Enc0||Enc1)
parse←− EV V [node]⊕pad

K ← DOT (sk, a′[j])
Dec0 ← K ⊕ Enc0
Dec1 ← K ⊕ Enc1
if k least significant bits of Dec0 are 0
then
pad||node||0k parse←− Dec0

else
pad||node||0k parse←− Dec1

end if
pad← G(pad)

end while
Client outputs (pad ⊕ EV V [node]) as his
final output.

Security. The simulation proof for protocol 2 follows the same line of argu-
ment as that of protocol 1. The main difference in the security claim for protocol
2 is that it is private against a malicious server (as opposed to being fully-secure).
The intuition behind this weakening in the security guarantee is that the server

can construct an
−−−→
EV V that does no correspond to a valid decision tree, and our

protocol does not provide any mechanisms for detecting this type of behavior.
However, the protocol is still private, since all that the server sees in the proto-
col are the OT queries. Also note that the client is always able to compute an

output even if the
−−−→
EV V is not a valid tree (there is no possibility of failure con-

ditioned on specific input values), and hence the server cannot take advantage
of the pattern of aborts by the client in order to learn additional information.
It is possible to augment the protocol with zero-knowledge proofs that yield full
security against a malicious server, but all the obvious ways of doing so would
diminish the efficiency properties we are after. In particular both the server and
the client would have to do a number of exponentiations that is proportional to
the size of the tree.

Next, we state our security theorem. Readers are referred to the full version
of the paper [18] for the proof of Theorem 2.

Theorem 2 In the strong-OT-hybrid model, and given a cryptographically se-
cure PRG G, the above protocol is fully-secure against a malicious client and is
private against a malicious server.

Complexity. Similar to protocol 1, protocol 2 runs in one round. The asymp-
totic computational complexity for the client and the server remains the same
too. In other words, the client and the server perform O(n) exponentiations for
the OTs. Server performs O(|V |) PRG invocations and XOR operations while
the client performs O(l) PRG and XOR operations where l is the length of the
decision tree.

The communication cost of the protocol is dominated by size of
−−−→
EV V which

consists of |V | elements of size 4k+ log |V |. This leads to a total communication
of O(|V |(log |V |+ k) bits.

5 Extension to Branching Programs (BP)

In this section we extend our proposed protocol of previous section to branch-
ing programs (BP). BPs are decision programs that are represented as directed
acyclic graphs [25], and hence may contain various paths from the root to some
nodes. Because of the structure of the BPs, a variable may be evaluated more
than once in a single evaluation. In order to hide the number of times a variable
is visited from a curious party, and to obliviously evaluate a BP, we generate
a separate OT answer vector for each level of the BP. This can be done by
computing a permuted OT answer matrix (A′) instead of an OT answer vector

described in protocol 2, and using the indices to this matrix when
−−−→
EV V is com-

puted. Similar to the previous protocol, we need a strong OT as a sub-protocol
to prevent correlation between OT queries, and answers.

More formally, assume that PERln is a permutation matrix of dimension l×n
where l is the length of the program.A′ is computed as follows:

for i = 1 to l do
for j = 1 to n do

(K0
i,j ,K

1
i,j)

$←{0, 1}k
′

A′[i, PERln[i, j]]← AOT (pk, qj ,K
0
i,j ,K

1
i,j)

end for

end for

Moreover, in the
−−−→
EV V computation step, PERln[height(i), ψV (i)] is used to

point to the elements in A′. To compute the final result, the client will also use
the elements in the A′ matrix to retrieve the keys and evaluate the BP.

The argument for the security of this scheme is almost the same as protocol
2.

Theorem 3 In the strong-OT-hybrid model, and given a cryptographically se-
cure PRG G, the above-mentioned protocol is fully-secure against a malicious
client and is private against a malicious server.

Complexity. As before, the protocol runs in one round. The number of
exponentiations performed by the client remains the same but the server has
to perform slightly more exponentiations. In other words, the client performs
O(n) exponentiations and the server performs O(ln) exponentiations for the OTs
where l is the length of the branching program. The number of PRG invocations
and XOR operations remains the same as protocol 2 which is O(|V |) for the
server andO(l) for the client. The asymptotic communication cost of the protocol
remains the same as protocol 2 which is O(|V |(log |V |+ k)) bits.

Table 1 compares the complexities of the related work with our proposed
protocol for oblivious evaluation of BPs. The main advantage of our proposed
protocol over the previous schemes is that the server’s asymmetric computation
is independent of the size of the branching program. This feature makes our pro-
tocol truly efficient when |V | is large. In case of Yao-based constructions, the size
of the circuit required for evaluating a branching program of size |V | and length
l on an input of size n is O(|V |l(log |V | + log n)). Therefore, using Yao’s pro-
tocol for oblivious branching program evaluation yields a protocol which needs
O(|V |l(log |V | + log n)) symmetric-key operations for both the client and the
server, and a communication complexity of O(|V |lk(log |V |+ log n)).

Table 1. Comparison of protocols for oblivious branching program evaluation

Rounds Client Computations Server Computations Communication
Asymmetric Symmetric Asymmetric Symmetric Complexity

Yao [26] 1 O(n) O(|V |l(log |V | + logn)) O(n) O(|V |l(log |V | + logn))O(|V |lk(log |V | + logn))

[13] 1 O(n+ l) none O(|V |) none O(knl)
[4, 2] O(|V |) O(|V |+ n) O(|V |) O(|V |) O(|V |) O(k(n+ |V |))
Ours 1 O(n) O(l) O(ln) O(|V |) O(|V |(log |V | + k))

6 Applications

An Improved OTN1 Protocol. We review the Naor-Pinkas OTN1 and its ef-
ficiency in Appendix C of [18]. It is easy to observe that looking up an index
X = x1 · · ·xlogN in a database of size N can be efficiently described as evalua-
tion of a decision tree on X, where the node variables are xi’s and the terminal

(leaf) node values are the elements of the database. This way, an OTN1 can be
represented as a special case of our proposed protocol 1. This yields a more ef-
ficient OTN1 protocol with only O(N) instead of O(N logN) PRG invocations
which is the case in the Naor-Pinkas protocol [19].

Claim 1 Let N be the size of the database. Given a one-round 1-out-of-2 OT
protocol with security against malicious adversaries, there exists a one-round
two-party protocol for 1-out-of-N OT, with full-security against malicious ad-
versaries. The protocol only requires O(logN) exponentiations by both parties.
The total work of the client is O(logN), while the server performs O(N) PRG
invocations.

The security of the construction follows from our more general construction
in Section 3. It is also easy to verify the claimed computational complexities.

A Private Keyword Search Protocol. We first recall the setup for the
private keyword search (PKS) problem. A server and a client are involved in this
problem. The server’s input is a database D of N pairs (ki, pi), where ki ∈ {0, 1}`
is a keyword, and pi ∈ {0, 1}m is the corresponding payload. The client’s input
is an ` bit searchword w = w1w2 · · ·w`. If there is a pair (ki, pi) in the database
such that ki = w, then the output is the corresponding payload pi. Otherwise
the output is a special symbol ⊥.

Designing efficient PKS protocols has been the focus of several works in the
literature [6, 9]. However, these works have mostly focused on optimizing the
communication complexity of the protocols. In particular, they require O(N)
exponentiations by the server, which is a significant computational burden for
large N .

Using the techniques we developed in previous section, we can design an
efficient PKS with properties mentioned in the claim below. The details of the
construction are available in the full version of the paper [18].

Claim 2 Let ` be the length of the keywords and N be the size of the database.
Given a one-round OT protocol with security against malicious adversaries,
there exists a one-round two-party protocol for private keyword search, with full-
security against a malicious client and privacy against a malicious server. The
protocol only requires O(`) exponentiations by both parties. The total work of the
client is O(`), while the server performs O(N`) symmetric operations.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: EUROCRYPT 2001. pp. 119–135 (2001)

2. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: ESORICS 2009. pp. 424–439 (2010)

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: Pir with preprocessing. In: CRYPTO 2000. pp. 55–73 (2000)

4. Brickell, J., Porter, D., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS 2007. pp. 498–507 (2007)

5. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: EUROCRYPT 99. pp. 402–414 (1999)

6. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords.
Manuscript (1997)

7. Chung, K.M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: CRYPTO 2010. pp. 483–501 (2010)

8. Dedic, N., Mohassel, P.: Constant-round private database queries. Automata, Lan-
guages and Programming pp. 255–266 (2007)

9. Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: TCC 2005. pp. 303–324 (2005)

10. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: CRYPTO 2010. pp. 465–482 (2010)

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM STOC
2009. pp. 169–178 (2009)

12. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: CRYPTO 2003. pp. 145–161 (2003)

13. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: TCC
2007. pp. 575–594 (2007)

14. Kalai, Y.: Smooth projective hashing and two-message oblivious transfer. In: EU-
ROCRYPT 2005. pp. 78–95 (2005)

15. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS 97. pp. 364–373 (1997)

16. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
ISC 2005. pp. 314–328 (2005)

17. Lipmaa, H.: Private branching programs: On communication-efficient cryptocom-
puting. Tech. rep., Cryptology ePrint Archive, Report 2008/107 (2008)

18. Mohassel, P., Niksefat, S.: Oblivious decision programs from oblivious transfer: Effi-
cient reductions (full version). http://pages.cpsc.ucalgary.ca/ ∼pmohasse/odp.pdf
(2011)

19. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: ACM
STOC 1999. pp. 245–254. ACM (1999)

20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM SIAM 2001.
pp. 448–457 (2001)

21. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

22. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: FC 2011 (2011)

23. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: CRYPTO 2008. pp. 554–571 (2008)

24. Sion, R., Carbunar, B.: On the computational practicality of private information
retrieval. In: NDSS 2007. pp. 2006–06 (2007)

25. Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing (1996)

26. Yao, A.: Protocols for secure computations. In: FOCS 82. pp. 160–164 (1982)

