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Abstract. The diversity of computing platforms is increasing rapidly.
In order to allow security applications to run on such diverse platforms,
implementing and optimizing the same cryptographic primitives for mul-
tiple target platforms and heterogeneous systems can result in high costs.
In this paper, we report our efforts in developing and benchmarking a
platform-independent Crypto Tools Library (CTL). CTL is based on a
dataflow programming framework called Reconfigurable Video Coding
(RVC), which was recently standardized by ISO/IEC for building com-
plicated reconfigurable video codecs. CTL benefits from various proper-
ties of the RVC framework including tools to 1) simulate the platform-
independent designs, 2) automatically generate implementations in dif-
ferent target programming languages (e.g., C/C++, Java, LLVM, and
Verilog/VHDL) for deployment on different platforms as software and/or
hardware modules, and 3) design space exploitation such as automatic
parallelization for multi- and many-core systems. We benchmarked the
performance of the SHA-256 implementation in CTL on single-core tar-
get platforms and demonstrated that implementations automatically gen-
erated from platform-independent RVC applications can achieve a run-
time performance comparable to reference implementations manually
written in C and Java. For a quad-core target platform, we benchmarked
a 4-adic hash tree application based on SHA-256 that achieves a perfor-
mance gain of up to 300% for hashing messages of size 8 MB.

Keywords: Crypto Tools Library (CTL), Reconfigurable Video Coding
(RVC), dataflow programming, reconfigurability, platform independence,
multi-core.

1 Introduction

Nowadays we are living in a fully digitized and networked world. The ubiq-
uitous transmission of data over the open network has made security one of

? Full edition of this paper is available at http://eprint.iacr.org/2011/679.
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the most important concerns in almost all modern digital systems, being pri-
vacy another. Both security and privacy concerns call for support from applied
cryptography. However, the great diversity of today’s computing hardware and
software platforms is creating a big challenge for applied cryptography since we
need building blocks that should ideally be reused at various platforms without
reprogramming. For instance, a large-scale video surveillance system (like those
we have already been seeing in many big cities) involves many different kinds
of hardware and software platforms: scalar sensors, video sensors, audio sensors,
mobile sensors (e.g. mobile phones), sensor motor controller, storage hub, data
sink, cloud storage servers, etc. [11]. Supporting so many different devices in
a single system or cross the boundary of multiple systems is a very challeng-
ing task. Many cryptographic libraries have been built over the years to partly
meet this challenge, but most of them are written in a particular programming
language (e.g. C, C++, Java and VHDL) thus their applications are limited in
nature. While it is always possible to port a library written in one language
to the other, the process requires significant human involvement on reprogram-
ming and/or re-optimization, which may not be less easier than designing a new
library from scratch.

In this paper, we propose to meet the above-mentioned technical challenges
by building a platform-independent library based on a recently-established ISO /
IEC standard called RVC (Reconfigurable Video Coding) [33,34]. Unlike its name
suggests, the RVC standard offers a general framework for all data-driven sys-
tems including cryptosystems, which is not surprising because video codecs are
among the most complicated data-driven systems we can have. The RVC frame-
work follows the dataflow paradigm, and enjoys the following nice features at
the level of programming language: modularity, reusability, reconfiguration, code
analyzability and parallelism exploitability. Modularity and reusability help to
simplify the design of complicated programs by having functionally separated
and reusable computational blocks; reconfigurability makes reconfiguration of
complicated programs easier by offering an interface to configure and replace
computational blocks; code analyzability allows automatic analysis of both the
source code and the functional behavior of each computational block so that code
conversion and program optimization can be done in a more systematic man-
ner. The automated code analysis enables to conduct a fully-/semi-automated
design-space exploitation to find critical paths and/or parallel data-flows, which
suggests different optimization refactorings (merging or splitting) of different
computational blocks [43], and/or to achieve concurrency by mapping differ-
ent computational blocks to different computing resources [20]. In contrast to
the traditional sequential programming paradigm, the dataflow programming
paradigm is ideally suited for such optimizations thanks to its data-driven na-
ture as described next.

The dataflow programming paradigm, invented in the 1960s [61], allows pro-
grams to be defined as a directed graph in which the nodes correspond to com-
putational units and edges represent the direction of the data flowing among
nodes [25,40]. The modularity, reusability and reconfigurability are achieved by
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making each computational unit’s functional behavior independent of other com-
putational units. In other words, the only interface between two computational
units is the data exchanged. The separation of functionality and interface allows
different computational units to run in parallel, thus easing parallelism exploita-
tion. The dataflow programming paradigm is suited ideally for applications with
a data-driven nature like signal processing systems, multimedia applications, and
as we show in this paper also for cryptosystems.

Our Contributions: In this paper, we present the Crypto Tools Library (CTL)
as the first (to the best of our knowledge) open and platform-independent cryp-
tographic library based on a dataflow programming framework (in our case the
RVC framework). In particular, the CTL achieves the following goals:

– Fast development/prototyping: By adapting the dataflow programming
paradigm the CTL components are inherently modular, reusable, and easily
reconfigurable. These properties do not only help to quickly develop/prototype
security algorithms but also make their maintenance easier.

– Multiple target languages: The CTL cryptosystems are programmed
only once, but can be used to automatically generate source code for mul-
tiple programming languages (C, C++, Java, LLVM, XLIM, Verilog, and
VHDL at the time for this writing5).

– Automatic code analyzability and optimization: An automated design-
space exploitation process can be performed at the algorithmic level, which
can help to optimize the algorithmic structure by refactoring (merging or
splitting) selected computational blocks, and by exploiting multi-/many-core
computing resources to run different computational blocks in parallel.

– Hardware/Software co-design: Heterogenous systems involving software,
hardware, and various I/O devices/channels can be developed in the RVC
framework [62].

– Adequate run-time performance: Although CTL cryptosystems are high-
ly abstract programs, the run-time performance of automatically synthesized
implementations is still adequate compared to non-RVC reference implemen-
tations.

In this paper, along with the development of the CTL itself, we report some
performance benchmarks of CTL that confirm that the highly abstract nature
of the RVC code does not compromise the run-time performance. In addition,
we also briefly discuss how different key attributes of the RVC framework can
be used to develop different cryptographic algorithms and security applications.

Outline: The rest of the paper is organized as follows. In Sec. 2 we will give
a brief overview of related work, focusing on a comparison between RVC and
other existing dataflow solutions. Sec. 3 gives an overview of the building blocks

5 More code generation backends are going to be made in the future, especially
OpenCL for GPUs.
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of the RVC framework and Sec. 4 describes the design principles of CTL and
the cryptosystems that are already implemented. In Sec. 5, we give performance
benchmarks of SHA-256 implemented in CTL on a single-core and a quad-core
machine. In Sec. 6, we conclude the paper by giving directions for future works.

2 Related Work

Many cryptographic libraries have been developed over the years (e.g., [16,24,30,
41,46,56,57,63,64]), but very few can support multiple programming languages.
Some libraries do support more than one programming language, but often in the
form of separate sets of source code and separate programming interfaces/APIs
[63], or available as commercial software only [8, 41]. There is also a large body
of optimized implementations of cryptosystems in the literature [17,18,21,44,45,
55, 67], which normally depend even more on the platforms (e.g., the processor
architecture and/or special instruction sets [28,45,66,67]).

Despite being a rather new standard, the RVC framework has been success-
fully used to develop different kinds of data-driven systems especially multimedia
(video, audio, image and graphics) codecs [12–14,19,35] and multimedia security
applications [10]. In [10], we highlighted some challenges being faced by develop-
ers while building multimedia security applications in imperative languages and
discussed how those challenges can be addressed by developing multimedia secu-
rity applications in the RVC framework. In addition, we presented three multi-
media security applications (joint H.264/MPEG-4 video encoding and decoding,
joint JPEG image encoding and decoding and compressed domain JPEG image
watermark embedding and detecting) developed using the CTL cryptosystems
and the RVC implementations of H.264/MPEG-4 and JPEG codecs. Consider-
ing the focus of that paper, we only used and briefly summarized CTL. In this
paper, we give a detailed discussion on CTL, its design principles, features and
benefits, and performance benchmarking results.

The wide usage of RVC for developing multimedia applications is not the
only reason why we chose it for developing CTL. A summary of advantages of
RVC over other solutions is given in Table 1 (this is an extension of the table
in [10]). We emphasize that this comparison focuses on the features relevant
to achieve the goals of CTL, so it should not be considered as an exhaustive
overview of all pros and cons of the solutions compared.

3 Reconfigurable Video Coding (RVC)

The RVC framework was standardized by the ISO/IEC (via its working group
JTC1 / SG29 / WG11, better known as MPEG – Motion Picture Experts Group
[48]) to meet the technical challenges of developing more and more complicated
video codecs [33,34]. One main concern of the MPEG is how to make video codecs
more reconfigurable, meaning that codecs with different configurations (e.g.,
different video coding standards, different profiles and/or levels, different system
requirements) can be built on the basis of a single set of platform-independent
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Table 1: Comparison of RVC framework with other candidate solutions. Can-
didates with similar characteristics are grouped together. These categories in-
clude 1) high-level specification languages for hardware programming languages,
2) frameworks for hardware/software co-design, 3) commercial products, and
4) other cryptographic libraries. The columns in the table represent the follow-
ing features: A) high-level (abstract) modeling and simulation; B) platform inde-
pendence; C) code analyzability (i.e., semi-automated design-space exploitation);
D) hardware code generation; E) software code generation; F) hardware/software
co-design; G) supported target languages; H) open-source or free implementa-
tions; I) international standard.

Cat. Candidate A B C D E F G H I

RVC Yes Yes Yes Yes Yes Yes
(C, C++, Java,
LLVM, Verilog,
VHDL, XLIM)

Yes Yes

1 Handel-C [39] No No No Yes No No (VHDL) No No

ImpulseC [15] No No No Yes No Yes (VHDL) No No

Spark [29] No No No Yes No Yes (VHDL) No No

2 BlueSpec [49] Yes No Yes Yes Yes No (C, Verilog) No No

Daedalus [65] Yes Yes Yes Yes Yes Yes (C, C++, VHDL) Yes No

Koski [38] Yes Yes Yes Yes Yes Yes (C, XML, VHDL) No No

PeaCE [31] Yes Yes Yes Yes Yes Yes (C, C++, VHDL) Yes No

3 CoWare [58] Yes Yes No Yes Yes Yes (C, VHDL) No No

Esterel [1] No Yes No Yes Yes No (C, VHDL) Yes
Not
yet

LabVIEW [3] Yes Yes Yes No No No 0 No No

Simulink [4] Yes Yes Yes Yes Yes No
(C, C++, Verilog,

VHDL)
No No

Synopsys System
Studio [7]

Yes Yes Yes Yes Yes Yes
(C++, SystemC,
SystemVerilog)

No No

4 CAO [9,47] Yes Yes No No Yes No
(C, x86-64 assembly,

ARM)
No No

Cryptol [8, 41] Yes Yes Yes Yes Yes No
(C, C++, Haskell,
VHDL, Verilog)

No No

building blocks. To achieve this goal, the RVC standard defines a framework
that covers different steps of the whole life cycle of video codec development.
The RVC community has developed supporting tools [2, 5, 6] to make the RVC
framework not only a standard, but also a real development environment.

While the RVC framework is developed in the context of video coding, it
is actually a general-purpose framework that can model any data-driven ap-
plications such as cryptosystems. It allows developers to work with a single
platform-independent design at a higher level of abstraction while still being
able to generate multiple editions of the same design that target different plat-
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forms like embedded systems, general-purpose PCs, and FPGAs. In principle,
the RVC framework also supports hardware-software co-design by converting
parts of a design into software and other parts into hardware. Additionally, the
RVC framework is based on two languages that allow automatic code analysis
to facilitate large-scale design-space exploitation like enhancing parallelism of
implementations running on multi-core and many-core systems [14,20,43].

The RVC standard is composed of two parts: MPEG-B Part 4 [34] and
MPEG-C Part 4 [33]. MPEG-B Part 4 specifies the dataflow framework for de-
signing and/or reconfiguring video codecs, and MPEG-C Part 4 defines a video
tool library that contains a number of Functional Units (FUs) as platform-
independent building blocks of MPEG standard compliant video codecs [33].
To support the RVC dataflow framework, MPEG-B Part 4 specifies three differ-
ent languages: a dataflow programming language called RVC-CAL for describing
platform-independent FUs, an XML dialect called FNL (FU Network Language)
for describing connections between FUs, and another XML dialect called RVC-
BSDL for describing the syntax format of video bitstreams. RVC-BSDL is not
involved in this work, so we will not discuss it further.

The real core of the RVC framework is RVC-CAL, a general-purpose dataflow
programming language for specifying platform-independent FUs. RVC-CAL is
a subset of another existing dataflow programming language CAL (Caltrop Ac-
tor Language) [26]. In RVC-CAL, FUs are implemented as actors containing a
number of fireable actions and internal states. In the RVC-CAL’s term, the data
exchanged among actors are called tokens. Each actor can contain both input
and output port(s) that receive input token(s) and produce output token(s),
respectively. Each action may fire depending on four different conditions: 1) in-
put token availability; 2) guard conditions; 3) finite-state machine based action
scheduling; 4) action priorities. In RVC-CAL, actors are the basic functional en-
tities that can run in parallel, but actions in an actor are atomic, meaning that
only one action can fire at one time. This structure gives a balance between mod-
ularity and parallelism, and makes automatic analysis of actor merging/splitting
possible.

Figure 1 illustrates how an application can be modeled and how target im-
plementations can be generated with the RVC framework. At the design stage,
different FUs (if not implemented in any standard library) are first written in
RVC-CAL to describe their I/O behavior, and then an FU network is built to
represent the functionality of a whole application. The FU network can be built
by simply connecting all FUs involved graphically via a supporting tool called
Graphiti Editor [2], which translates the graphical FU network description into
a textual description written in FU Network Language (FNL). The FUs and the
FU network are instantiated to form an abstract model. This abstract model
can be simulated to test its functionality without going to any specific platform.
Two available supporting tools allowing the simulation are OpenDF [5] and
ORCC [6]. At the implementation stage, the source code written in other target
programming languages can be generated from the abstract application descrip-
tion automatically. OpenDF includes a Verilog HDL code generation backend,
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Fig. 1: Process of application implementation generation in the RVC framework.

and ORCC contains a number of code generation backends for C, C++, Java,
LLVM and VHDL. ORCC is currently more widely used in the RVC community
and it is also the choice of our work reported in this paper.

4 Crypto Tools Library (CTL)

Crypto Tools Library (CTL) is a collection of RVC-CAL actors and XDF net-
works for cryptograpic primitives such as block ciphers, stream ciphers, crypto-
graphic hash functions and PRNGs (see Sec. 4.2 for a list of currently imple-
mented algorithms). Being an open project, the source code and documentation
of CTL is available at http://www.hooklee.com/default.asp?t=CTL.

As mentioned in Sec. 1, most existing cryptographic libraries are devel-
oped based on a single programming language (mostly C/C++ or Java) that
can hardly be converted to other languages. In contrast, CTL is a platform-
independent solution whose source code is written in RVC-CAL and FNL that
can be automatically translated into multiple programming languages (C, C++,
Java, LLVM, Verilog, VHDL, XLIM). More programming languages can be sup-
ported by developing new code generation tools for RVC applications.

4.1 Design Principles

The CTL is developed by strictly following the specifications/standards defining
the implemented cryptosystems. For block ciphers, both enciphers and deci-
phers are implemented so that a complete security solution can be built. When
it is possible, the CTL FUs are designed to exploit inherent parallelism in the

http://www.hooklee.com/default.asp?t=CTL
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implemented cryptosystems. For instance, for block ciphers based on multiple
rounds, the round number is also transmitted among different FUs so that en-
cryption/decryption of different blocks can be parallelized.

The CTL is designed so that different cryptosystems can share common FUs.
We believe that this can help enhance code reusability and ease reconfigurability
of the CTL cryptosystems. In addition, CTL includes complete solutions (e.g.,
both encipher and decipher) of the implemented cryptosystems, normally a set
of CAL and XDF files.

4.2 Cryptosystems Covered

CTL contains some standard and frequently used cryptosystems. In the follow-
ing, we list the cryptosystems currently implemented in CTL. The correctness of
all cryptosystems has been validated using the test vectors given in the respective
standards.

– Block Ciphers:
• AES-128/192/256 [51],
• DES [50] and Triple DES [50,52],
• Blowfish [59],
• Modes of operations: CBC, CFB, OFB, CTR.

– Stream Ciphers: ARC4 [60] and Rabbit [23].
– Cryptographic hash functions: SHA-1, SHA-2 (SHA-224, SHA-256) [53].
– PSNRs: 32-bit and 64-bit LCG [60] and LFSR-based PRNG [60].

CTL also includes some common utility FUs (e.g., multiplexing/demultiplex-
ing of dataflows, conversion of bytes to bits and vice versa etc.) that are shared
among different cryptosystems and can also find applications in non-cryptography
systems. Due to the space limitation, we refer the reader to the full edition of
this paper for a list of the utility FUs and more discussions of the cryptosystems
implemented in CTL.

5 Performance Benchmarking of CTL

Previous work has demonstrated that the RVC framework can outperform other
sequential programming languages in terms of implementing highly complex
and highly parallelizable systems like video codecs [19]. However, there are still
doubts about if the high-level abstraction of RVC-CAL and the automated code
generation process may compromise the overall performance to some extent at
the platform level. In this section, we clarify those doubts by showing that the
automatically generated implementations from a typical RVC-based application
can usually achieve a performance comparable to manually-written implemen-
tations in the target programming language. This was verified on AES and
SHA-256 applications in CTL. In this section, we take SHA-256 as an example
to show how we did the benchmarking on a single-core machine and a quad-core
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Table 2: Configuration of the test machine.

Machine Hardware and Operating System Details

Desktop PC: – Model: HP Centurion

– CPU: Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz

– Memory: 8GB RAM

– OS1: Windows Vista Business with Service Pack 2 (64-bit Edition)

– OS2: Ubuntu Linux (Kernel version: 2.6.27.11)

one. The main purpose of getting the quad-core machine involved is to show
how easy one can divide an FU network and map different parts to different
cores to make a better use of the computing resources. In the given example, the
partitioning and mapping were both done manually, but they can be automated
for large applications thanks to the code analyzability of RVC-CAL.

Run-Time Performance Metric We ran our experiments on Microsoft both
Windows and Linux (see Table 2 for details). Both operating systems sup-
port high resolution timers to measure time in nanoseconds. More specifically,
we used the QueryPerformanceCounter() and QueryPerformanceFrequency()

functions (available from Windows API) on Windows, and the clock gettime()

and clock getres() functions with CLOCK MONOTONIC clock (available from the
Higher Resolution Timer [22] package) on Linux. In addition, to circumvent the
caching problem, we conducted 100 independent runs (with random input data)
of each configuration and used the average value as the final performance metric.

The concrete specifications of our test machines can be found in Table 2. Due
to the multi-tasking nature of Windows and Linux operating systems, the bench-
marking result can be influenced by other tasks running in parallel. In order to
minimize this effect, we conducted all our experiments under the safe mode of
both OSs. We used Microsoft Visual Studio 2008 and GCC 4.3.2 as C compilers
for the Windows and the Linux operating systems, respectively. Both compil-
ers were configured to maximize the speed of generated executables. For Java
programs, we used Eclipse SDK 3.6.1 and Java(TM) SE Runtime Environment
(build 1.6.0 12-b04).

Benchmarking of SHA-256 on Single-Core Platform In this subsection,
we present the results of benchmarking a single SHA-256 FU against some non-
RVC reference implementations in C (OpenSSL [64], OGay [27], and sphlib [56])
and Java (Java Cryptography Architecture (JCA) [54]). Figure 2 shows the re-
sults of our benchmarking under Windows operating system while our test ma-
chine was configured to run only one CPU core. One can see that the run-time
performance of CTL implementation is better than OpenSSL but inferior to
carefully optimized (OGay and sphlib) implementations. In addition, the CTL’s
Java implementation of SHA-256 does not outperform the JCA implementation.
This can probably be explained by the fact that the current edition of the ORCC
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Fig. 2: Benchmarking of a single SHA-256 FU.

Java backend does not generate very efficient code. These results indicate that
the CTL’s SHA-256 implementation can achieve a performance similar to ref-
erence implementations. We also did similar benchmarking experiments on the
AES block cipher in CTL (included in the full edition of the paper) and came
to a similar conclusion.

Benchmarking of SHA-256 on Multi-Core Platform On a platform with
multiple CPU cores, one can map different parts of an FU network to differ-
ent CPU cores so that the overall run-time performance of the application can
be improved. The C backend of the RVC supporting tool ORCC [6] supports
multi-core mapping, so one can easily allocate different FUs or FU sub-networks
to different CPU cores. To see how much benefit we can get from a multi-core
platform, we devised a very simple RVC application called HashTree that imple-
ments the following functionality using five hash H operations: given an input
signal x = x1 ‖ x2 ‖ x3 ‖ x4 consisting of four blocks xi, hash each block
hi = H(xi) and then output H(h1 ‖ h2 ‖ h3 ‖ h4). In our implementation of
HashTree, we instantiated H with SHA-256. By comparing this application with
the simple single-core SHA-256 application computing H on the same input (i.e.,
H(x1 ‖ x2 ‖ x3 ‖ x4)), we can roughly estimate the performance gain.

In the benchmarking process, we considered three different configurations:

– Single SHA-256: This configuration represents a single SHA-256 FU run-
ning on a single-core, which processes an input x and produces the hash. We
used this configuration as the reference point to evaluate the performance
gain of the following two configurations, which implement HashTree using
five SHA-256 instances.

– 5-thread with manual mapping: In this configuration, each SHA-256 in-
stance is programmatically mapped to run as a separate thread on a specific
CPU core of our quad core machine. At the start of the hashing process,
we manually mapped the 4 threads (processing hi = H(xi)) to four CPU
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Fig. 3: The performance gain we can get from the benchmarked configurations.

cores. The 5th thread performing the final hashing operation is created and
mapped after the preceding 4 threads are finished with their execution.

– 1-thread with manual mapping: Similar to above configuration, this
configuration also implements HashTree. However, all five SHA-256 instances
are bounded to run in a single thread on a specific CPU core of our quad
core machine.

It should be noted that thread creation and mapping also consume some
CPU time, which is the cost one has to pay to achieve concurrency. Therefore,
in order to make the study judicial, we also count the times spent on thread
creation and thread mapping.

The benchmarking results are shown in Fig. 3. One can see that the perfor-
mance gain is between 200% to 300% when five threads are used.

6 Future Works

In order to allow researchers from different fields to extend CTL and use it
for more applications, we have published CTL as an open-source project at
http://www.hooklee.com/default.asp?t=CTL. In our future work, we plan to
continue our research on the following possible directions.

Cryptographic Primitives. The CTL can be enriched by including more cryp-
tographic primitives (especially public-key cryptography), which will allow cre-
ation of more multimedia security applications and security protocols. Another
direction is to develop optimized versions of CTL cryptosystems. For instance,
bit slicing can be used to optimize parallelism in many block ciphers [28,45].

Security Protocols. Another direction is to use the RVC framework for the design
and development of security protocols and systems with heterogenous compo-
nents and interfaces. While RVC itself is platform independent, “wrappers” [62]

http://www.hooklee.com/default.asp?t=CTL
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can be developed to bridge the platform-independent FUs with physical I/O
devices/channels (e.g., a device attached to USB port, a host connected via
LAN/WLAN, a website URL, etc.). Although there are many candidate proto-
cols that can be considered, as a first step we plan to implement the hPIN/hTAN
e-banking security protocol [42], which is a typical (but small-scale) heteroge-
neous system involving a hardware token, a web browser plugin on the user’s
computer, and a web service running on the remote e-banking server. We have
already implemented an hPIN/hTAN prototype system without using RVC, so
the new RVC-based implementation can be benchmarked against the existing
system.

Cryptographic Protocols. Many cryptographic protocols require a high amount of
computations. One example are garbled circuit protocols [68] that allow secure
evaluation of an arbitrary function on sensitive data. These protocols can be
used as basis for various privacy-preserving applications. On a high-level, the
protocol works by one party first generating an encrypted form of the function
to be evaluated (called garbled circuit) which is then sent to the other party who
finally decrypts the function using the encrypted input data of both parties and
finally obtains the correct result. Recent implementation results show that such
garbled circuit-based protocols can be implemented in a highly efficient way
in software [32]. However, until now, there exist no software implementations
that exploit multi-core architectures. It was shown that such protocols can be
optimized when using both software and hardware together: For generation of
the garbled circuit, a trusted hardware token can generate the garbled circuit
locally and hence remove the need to transfer it over the Internet [36]. Here, the
encrypted versions of the gate which require four invocations of a cryptographic
hash function can be computed in parallel similar to the 4-adic hash tree we have
shown in Sec. 5. Furthermore, the evaluation of garbled circuits can be improved
when using hardware accelerations as shown in [37]. We believe that the RVC
framework can serve as an ideal basis for hardware-software co-designed systems
with parallelized and/or hardware-assisted garbled circuit-based protocols.
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T.D., Riihimäki, J., Kuusilinna, K.: UML-based multiprocessor SoC design frame-
work. ACM Trans. on Embedded Compututer Systems 5, 281–320 (2006)

39. Khan, E., El-Kharashi, M.W., Gebali, F., Abd-El-Barr, M.: Applying the Handel-
C design flow in designing an HMAC-hash unit on FPGAs. Computers and Digital
Techniques 153(5), 323–334 (2006)

40. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

41. Lewis, J.R., Martin, B.: Cryptol: High assurance, retargetable crypto development
and validation. In: Proc. 2003 IEEE Military Communication Conference (MIL-
COM 2003). pp. 820–825 (2003)

42. Li, S., Sadeghi, A.R., Heisrat, S., Schmitz, R., Ahmad, J.J.: hPIN/hTAN: A
lightweight and low-cost e-banking solution against untrusted computers. In: Fi-
nancial Cryptography and Data Security (FC 2011). LNCS (2011), in press.

43. Lucarz, C., Mattavelli, M., Dubois, J.: A co-design platform for algo-
rithm/architecture design exploration. In: Proc. 2008 IEEE International Con-
ference on Multimedia and Expo (ICME 2008). pp. 1069–1072 (2008)

44. Manley, R., Gregg, D.: A program generator for intel AES-NI instructions. In:
Progress in Cryptology – INDOCRYPT 2010. LNCS, vol. 6498, pp. 311–327 (2010)

45. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: Cryptographic Hardware and Embedded Systems – CHES 2007.
LNCS, vol. 4727, pp. 121–134 (2007)

46. Moran, T.: The Qilin Crypto SDK: An open-source Java SDK for rapid prototyping
of cryptographic protocols. http://qilin.seas.harvard.edu/

http://www.ouah.org/ogay/sha2
http://www.cs.auckland.ac.nz/~pgut001/cryptlib
http://qilin.seas.harvard.edu/


CTL: A Platform-Independent Crypto Tools Library 15

47. Moss, A., Page, D.: Bridging the gap between symbolic and efficient AES imple-
mentations. In: Proc. 2010 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (PEPM 2010). pp. 101–110 (2010)

48. Moving Picture Experts Group (MPEG): Who we are. http://mpeg.

chiariglione.org/who_we_are.htm
49. Nikhil, R.: Tutorial – BlueSpec SystemVerilog: Efficient, correct RTL from high-

level specifications. In: Proc. 2nd ACM/IEEE International Conference on Formal
Methods and Models for Co-Design (MEMOCODE 2004). pp. 69–70 (2004)

50. NIST: Data Encryption Standard (DES). FIPS PUB 46-3 (1999)
51. NIST: Specification for the Advanced Encryption Standard (AES). FIPS PUB 197

(2001)
52. NIST: Recommendation for the Triple Data Encryption Algorithm (TDEA) block

cipher. Special Publication 800-67, Version 1.1 (2008)
53. NIST: Secure Hash Standard (SHS). FIPS PUB 180-3 (2008)

54. OracleR©: Java
TM

Cryptography Architecture (JCA) Reference Guide.
http://download.oracle.com/javase/6/docs/technotes/guides/security/

crypto/CryptoSpec.html
55. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption.

In: Fast Software Encryption (FSE 2010). LNCS, vol. 6147, pp. 75–93 (2010)
56. Pornin, T.: sphlib 3.0. http://www.saphir2.com/sphlib
57. PureNoise Ltd Vaduz: PureNoise CryptoLib. http://cryptolib.com/crypto
58. Rompaey, K.V., Verkest, D., Bolsens, I., Man, H.D.: CoWare – a design environ-

ment for heterogeneous hardware/software systems. Design Automation for Em-
bedded Systems 1(4), 357–386 (1996)

59. Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-
fish). In: Fast Software Encryption (FSE’94). LNCS, vol. 809, pp. 191–204 (1994)

60. Schneier, B.: Applied Cryptography: Protocols, algorithms, and source code in C.
John Wiley & Sons, Inc., New York, second edn. (1996)

61. Sutherland, W.R.: The On-Line Graphical Specification of Computer Procedures.
Ph.D. thesis, MIT (1966)

62. Thavot, R., Mosqueron, R., Dubois, J., Mattavelli, M.: Hardware synthesis of com-
plex standard interfaces using CAL dataflow descriptions. In: Proc. 2009 Confer-
ence on Design and Architectures for Signal and Image Processing (DASIP 2009)
(2009)

63. The Legion of the Bouncy Castle: Bouncy Castle Crypto APIs. http://www.

bouncycastle.org
64. The OpenSSL Project: OpenSSL cryptographic library. http://www.openssl.org/

docs/crypto/crypto.html
65. Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra, S.,

Deprettere, E.F.: A framework for rapid system-level exploration, synthesis, and
programming of multimedia MP-SoCs. In: Proc. 5th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS
2007). pp. 9–14 (2007)
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