
Efficient, Compromise Resilient and Append-only
Cryptographic Schemes for Secure Audit Logging

Attila A. Yavuz and Peng Ning
Michael K. Reiter

Department of Computer Science,
North Carolina State University

Raleigh, NC 27695-8206,
{aayavuz,pning}@ncsu.edu

Department of Computer Science
University of North Carolina, Chapel Hill

Chapel Hill, NC
reiter@cs.unc.edu

Abstract. Due to the forensic value of audit logs, it is vital to provide compro-
mise resiliency and append-only properties in a logging system to prevent ac-
tive attackers. Unfortunately, existing symmetric secure logging schemes are not
publicly verifiable and cannot address applications that require public auditing
(e.g., public financial auditing), besides being vulnerable to certain attacks and
dependent on continuous trusted server support. Moreover, Public Key Cryptog-
raphy (PKC)-based secure logging schemes require Expensive Operations (Ex-
pOps) that are costly for both loggers and verifiers, and thus are impractical for
computation-intensive environments.
In this paper, we propose a new class of secure audit logging scheme called
Log Forward-secure and Append-only Signature (LogFAS). LogFAS achieves
the most desirable properties of both symmetric and PKC-based schemes. Log-
FAS can produce publicly verifiable forward-secure and append-only signatures
without requiring any online trusted server support or time factor. Most notably,
LogFAS is the only PKC-based secure audit logging scheme that achieves the
high verifier computational and storage efficiency. That is, LogFAS can verify
L log entries with always a small-constant number of ExpOps regardless of the
value of L. Moreover, each verifier stores only a small and constant-size pub-
lic key regardless of the number of log entries to be verified or the number of
loggers in the system. In addition, a LogFAS variation allows fine-grained ver-
ification of any subset of log entries and fast detection of corrupted log entries.
All these properties make LogFAS an ideal scheme for secure audit logging in
computation-intensive applications.

Keywords: Secure audit logging; applied cryptography; forward security; signature ag-
gregation.

1 Introduction

Audit logs have been used to track important events such as user activities and pro-
gram execution in modern computer systems, providing invaluable information about

the state of the systems (e.g., intrusions, crashes). Due to their forensic value, audit
logs are an attractive target for attackers. Indeed, an experienced attacker may erase the
traces of her malicious activities from the logs, or modify the log entries to implicate
other users after compromising the system. Therefore, ensuring the integrity, authentic-
ity and accountability of audit logs in the presence of attackers is critical for any modern
computer system [9, 20, 25, 29].

There are straightforward techniques to protect audit logs from active adversaries:
(i) Using a tamper resistant hardware on each logging machine to prevent the adversary
from modifying audit logs and (ii) transmitting each log entry as soon as it is generated
to a remote trusted server. Unfortunately, these approaches have significant limitations
as identified in [9, 19–21]: First, it is impractical to assume both the presence and the
“bug-freeness” of a tamper resistant hardware on all types of platforms (e.g., wireless
sensors [18], commercial off-the-shelf systems [7]) [17, 20]. Second, it is difficult to
guarantee timely communication between each logging machine and the remote trusted
server in the presence of active adversaries [11, 19, 29].

Limitations of Previous Cryptographic Log Protection Techniques: Cryptograp-
hic mechanisms can protect the integrity of audit logs without relying on such tech-
niques. In these settings, the log verifiers might not be available to verify the log entries
once they are generated. Hence, a logger may have to accumulate log entries for a period
of time. If the adversary takes full control of the logging machine in this duration, no
cryptographic mechanism can prevent her from modifying the post-attack log entries.
However, the integrity of log entries accumulated before the attack should be protected
(i.e., forward-security property) [1, 7, 9, 12, 17, 19, 20, 29]. Furthermore, this protection
should not only guarantee the integrity of individual log entries but also the integrity
of the log stream as a whole. That is, no selective deletion or truncation of log entries
should be possible (i.e., append-only (aggregate) property [17,18,20]). Forward-secure
and aggregate signatures (e.g., [17,18,20,29,30]) achieve forward-security and append-
only properties simultaneously.

Pioneering forward-secure audit logging schemes [6,7,25] rely on symmetric prim-
itives such as Message Authentication Code (MAC) to achieve computationally effi-
cient integrity protection. However, the symmetric nature of these schemes does not
allow public verifiability. This property is necessary for applications such as financial
auditing applications where financial books of publicly held companies need to be ver-
ified by the current and potential future share holders [12, 20]. Furthermore, symmetric
schemes require online remote trusted server support, which entails costly maintenance
and attracts potential attacks besides being a potential single-point of failures. Finally,
these schemes are shown to be vulnerable against the truncation and delayed detection
attacks [19, 20] (no append-only property).

To mitigate the above problems, several PKC-based secure audit logging schemes
have been proposed (e.g., [12, 17, 18, 20, 29]). These schemes are publicly verifiable
and do not require an online TTP support. However, they are costly for loggers (except
for BAF [29]) and extremely costly for the log verifiers. Second, to verify a particular
log entry, all these schemes [17–19, 29] force log verifiers to verify the entire set of log
entries, which entails a linear number of Expensive Operations (ExpOps)1, and failure

1 For brevity, we denote an expensive cryptographic operation such as modular exponentiation or pairing as an ExpOp.

2

Table 1. Comparison of LogFAS schemes and their counterparts for performance, applicability,
availability and security parameters

Criteria PKC-based SYM
LogFAS FssAgg/iFssAgg BAF Logcrypt [7, 25]

Computational AR BM BLS
Sig&Upd (per item) ExpOp ExpOp H ExpOp H

On- Ver, (L items) ExpOp + O(L · H) O(L · (ExpOp + H)) O(L · H)
line Subset ver (l′ < L) ExpOp + O(l′ · H) O(2l′(ExpOp + H)) Not immutable O(l′ · H)

Efficient Search Available Not Available -
Key Generation (Offline) O(L · ExpOp) O(L · H)

Storage Verifier |K| O(S · |K|) O(L · S)|K| O(S · |K|)
Signer O(L · (|D| + |K|)) O(L · |D|) + |K| O(L · |K|)O(L · |K|)

Communication O(L · |D|)
Public Verifiability Y Y N

Offline Server Y Y N
Immediate Verification Y Y N
Immediate Detection Y Y N
Truncation Resilience Y Y N N

LogFAS is the only PKC-based secure audit logging scheme that can verify O(L) items with a small-constant number of
ExpOps; all other similar schemes require O(L) ExpOps. Similarly, LogFAS is the only one achieving constant number of
public key storage (with respect to both number of data items and log entries to be verified) on the verifier side, while all
other schemes incur either linear or quadratic storage overhead (S, |D|, |K| denote the number of signers in the system,
the approximate bit lengths of a log entry and the bit length of a keying material, respectively). At the same time, LogFAS is
the only scheme that enables truncation-free subset verification and sub-linear search simultaneously.

of this verification does not give any information about which log entry(ies) is (are)
responsible for the failure.

Our Contribution: In this paper, we propose a new secure audit logging scheme,
which we call Log Forward-secure and Append-only Signature (LogFAS). We first de-
velop a main LogFAS scheme, and then extend it to provide additional capabilities.
The desirable properties of LogFAS are outlined below. The first three properties show
the efficiency of LogFAS compared with their PKC-based counterparts, while the other
three properties demonstrate the applicability, availability and security advantages over
their symmetric counterparts. Table 1 summarizes the above properties and compares
LogFAS with its counterparts.

1. Efficient Log Verification with O(1) ExpOp: All existing PKC-based secure audit log-
ging schemes (e.g., [12,17–20,29,30]) require O(L · (ExpOp+H)) to verify L log
entries, which make them costly. LogFAS is the first PKC-based secure audit log-
ging scheme that achieves signature verification with only a small-constant number
of ExpOps (and O(L) hash operations). That is, LogFAS can verify L log entries
with only a small-constant number of ExpOps regardless of the value of L. There-
fore, it is much more efficient than all of its PKC-based counterparts, and is also
comparably efficient with symmetric schemes (e.g., [7, 18, 25]) at the verifier side.

2. Efficient Fine-grained Verification and Change Detection: LogFAS allows fine-grained
verification with advantages over iFssAgg [20], the only previous solution for fine-
grained verification:
(i) Unlike iFssAgg schemes [20], LogFAS prevents the truncation attack2 in the
presence of individual signatures without doubling the verification cost.

2 The truncation attack is a special type of deletion attack, in which the adversary deletes a continuous subset of tail-end log
entries. This attack can be prevented via “all-or-nothing” property [18]: The adversary either should remain previously

3

(ii) LogFAS can verify any selected subset with l′ < L log entries with a small-
constant number of ExpOps, while iFssAgg schemes require O(2l′)ExpOps.
(iii) LogFAS can identify the corrupted log entries with a sub-linear number of Ex-
pOps when most log entries are intact. In contrast, iFssAgg schemes always require
a linear number of ExpOps.

3. Verifier Storage Efficiency with O(1) Overhead: Each verifier in LogFAS only stores
one public key independent of the number of loggers or the number of log entries
to be verified. Therefore, it is the most verifier-storage-efficient scheme among all
existing PKC-based alternatives. This enables verifiers to handle a large number of
log entries and/or loggers simultaneously without facing any storage problem.

4. Public Verification: Unlike the symmetric schemes (e.g., [7, 18, 25]), LogFAS can
produce publicly verifiable signatures, and therefore it can protect applications re-
quiring public auditing (e.g., e-voting, financial books) [12, 20].

5. Independence of Online Trusted Server: LogFAS schemes do not require online trusted
server support to enable log verification. Therefore, LogFAS schemes achieve high
availability, and are more reliable than the previous schemes that require such sup-
port (e.g., [7, 25, 30]).

6. High Security: We prove LogFAS to be forward-secure existentially unforgeable
against adaptive chosen-message attacks in Random Oracle Model (ROM) [4]. Fur-
thermore, unlike some previous symmetric schemes [7, 25], LogFAS schemes are
also secure against both truncation and delayed detection attacks.

2 Preliminaries

Notation. || denotes the concatenation operation. |x| denotes the bit length of variable

x. x $← S denotes that variable x is randomly and uniformly selected from set S. For

any integer l, (x0, . . . , xl)
$← S means (x0

$← S, . . . , xl
$← S). We denote by {0, 1}∗

the set of binary strings of any finite length. H is an ideal cryptographic hash function,
which is defined as H : {0, 1}∗ → {0, 1}|H|; |H| denotes the output bit length of H .
AO0,...,Oi(·) denotes algorithm A is provided with oracles O0, . . . ,Oi. For example,
AScheme.Sigsk (·) denotes that algorithmA is provided with a signing oracle of signature
scheme Scheme under private key sk .

Definition 1. A signature scheme SGN is a tuple of three algorithms (Kg ,Sig ,Ver)
defined as follows:

- (sk ,PK) ← SGN .Kg(1κ): Key generation algorithm takes the security parameter
1κ as the input. It returns a private/public key pair (sk ,PK) as the output.

- σ ← SGN .Sig(sk , D): The signature generation algorithm takes sk and a data
item D as the input. It returns a signature σ as the output (also denoted as σ ←
SGN .Sigsk (D)).

- c← SGN .Ver(PK , D, σ): The signature verification algorithm takes PK , D and σ
as the input. It outputs a bit c, with c = 1 meaning valid and c = 0 meaning invalid.

accumulated data intact, or should not use them at all (she cannot selectively delete/modify any subset of this data [20]).
LogFAS is proven to be secure against the truncation attack in Section 5.

4

Definition 2. Existential Unforgeability under Chosen Message Attack (EU-CMA) ex-
periment for SGN is as follows:
Experiment ExptEU -CMA

SGN (A)
(sk ,PK)← SGN .Kg(1κ), (D∗, σ∗)← ASGN .Sigsk (·)(PK),

If SGN .Ver(PK , D∗, σ∗) = 1 and D∗ was not queried, return 1, else, return 0.

EU-CMA-advantage of A is AdvEU -CMA
SGN (A) = Pr[ExptEU -CMA

SGN (A) = 1].
EU-CMA-advantage of SGN is AdvEU -CMA

SGN (t, L, µ) = maxA{AdvEU -CMA
SGN (A)}, where

the maximum is over all A having time complexity t, making at most L oracle queries,
and the sum of lengths of these queries being at most µ bits.

LogFAS is built on the Schnorr signature scheme [26]. It also uses an Incremental
Hash function IH [3] and a generic signature scheme SGN (e.g., Schnorr) as building
blocks. Both Schnorr and IH require that H : {0, 1}∗ → Z∗

q is a random oracle.

Definition 3. The Schnorr signature scheme is a tuple of three algorithms (Kg ,Sig ,Ver)
behaving as follows:
- (y, ⟨p, q, α, Y ⟩)← Schnorr .Kg(1κ): Key generation algorithm takes 1κ as the input.

It generates large primes q and p > q such that q|(p − 1), and then generates a

generator α of the subgroup G of order q in Z∗
p. It also generates (y

$← Z∗
q , Y ←

αy mod p), and returns private/public keys (y, ⟨p, q, α, Y ⟩) as the output.
- (s,R, e) ← Schnorr .Sig(y,D): Signature generation algorithm takes private key y

and a data item D as the input. It returns a signature triplet (s,R, e) as follows:

R←αr mod p, e←H(D||R), s←(r − e · y) mod q, where r
$← Z∗

q .
- c ← Schnorr .Ver(⟨p, q, α, Y ⟩, D, ⟨s,R, e⟩): Signature verification algorithm takes

public key ⟨p, q, α, Y ⟩, data item D and signature ⟨s,R, e⟩ as the input. It returns a
bit c, with c = 1 meaning valid if R = Y eαs mod p, and with c = 0 otherwise.

Definition 4. Given a large random integer q and integer L, incremental hash func-
tion family IH is defined as follows: Given a random key z = (z0, . . . , zL−1), where

(z0, . . . , zL−1)
$← Z∗

q and hash function H , the associated incremental hash function
IHq,L

z takes an arbitrary data item set D0, . . . , DL−1 as the input. It returns an integer
T ∈ Zq as the output,

Algorithm IHq,L
z (D0, . . . , DL−1)

T ←
∑L−1

j=0 H(Dj)zj mod q, return T .

Target Collision Resistance (TCR) [5] of IH relies on the intractability of Weighted
Sum of Subset (WSS) problem [3, 13] assuming that H is a random oracle.

Definition 5. Given IHq,L
z , let A0 be an algorithm that returns a set of target mes-

sages, and A1 be an algorithm that returns a bit. Consider the following experiment:
Experiment ExptTCR

IHq,L
z

(A = (A0,A1))

(D0, . . . , DL−1)← A0(L), z = (z0, . . . , zL−1)
$← Z∗

q ,

T ← IHq,L
z (D0, . . . , DL−1), (D

∗
0 , . . . , D

∗
L−1)← A1(D0, . . . , DL−1, T, IHq,L

z)

5

If T = IHq,L
z (D∗

0 , . . . , D
∗
L−1) ∧ ∃j ∈ {0, . . . , L − 1} : D∗

j ̸= Dj , return 1, else,
return 0.

TCR-advantage of A is AdvTCR
IHq,L

z
(A) = Pr[ExptTCR

IHq,L
z

(A) = 1].

TCR-advantage of IHq,L
z is AdvTCR

IHq,L
z

(t) = maxA{AdvTCR
IHq,L

z
(A)}, where the maxi-

mum is over all A having time complexity t.

3 Syntax and Models

LogFAS is a Forward-secure and Append-only Signature (FSA) scheme, which com-
bines key-evolve (e.g., [2, 15]) and signature aggregation (e.g., [8]) techniques. Specif-
ically, LogFAS is built on the Schnorr signature scheme [23, 26], and it integrates
forward-security and signature aggregation strategies in a novel and efficient way. That
is, different from previous approaches (e.g., [17–20, 25, 29, 30]), LogFAS introduces
verification with a constant number of ExpOps, selective subset verification and sub-
linear search properties via incremental hashing [3] and masked tokens in addition to
the above strategies.

Before giving more details, we briefly discuss the append-only signatures. A forward-
secure and aggregate signature scheme is an append-only signature scheme if no mes-
sage can be re-ordered or selectively deleted from a given stream of messages, while
new messages can be appended to the stream [18, 20]. In Section 5, we prove that Log-
FAS is an append-only signature scheme.

Definition 6. A FSA is comprised of a tuple of three algorithms (Kg ,FASig ,FAVer)
behaving as follows:

- (sk ,PK) ← FSA.Kg(1κ, L): The key generation algorithm takes the security pa-
rameter 1κ and the maximum number of key updates L as the input. It returns a
private/public key pair (sk ,PK) as the output.

- (sk j+1, σ0,j) ← FSA.FASig(sk j , Dj , σ0,j−1): The forward-secure and append-
only signing algorithm takes the current private key sk j , a new message Dj to be
signed and the append-only signature σ0,j−1 on the previously signed messages (D0,
. . . , Dj−1) as the input. It computes an append-only signature σ0,j on (D0, . . . , Dj),
evolves (updates) sk j to sk j+1, and returns (sk j+1, σ0,j) as the output.

- c ← FSA.FAVer(PK , ⟨D0, . . . , Dj⟩, σ0,j): The forward-secure and append-only
verification algorithm takes PK , ⟨D0, . . . , Dj⟩ and their corresponding σ0,j as the
input. It returns a bit c, with c = 1 meaning valid, and c = 0 otherwise.

In LogFAS, private key sk is a vector, whose elements are comprised of specially
constructed Schnorr private keys and a set of tokens. These tokens later become the part
of append-only signature σ accordingly. The public key PK is a system-wide public key
that is shared by all verifiers, and is comprised of two long-term public keys. Details
are given in Section 4.

6

3.1 System Model

LogFAS system model is comprised of a Key Generation Center (KGC) and multiple
signers (i.e., logging machines that could be compromised) and verifiers. As in forward-
secure stream integrity model (e.g., [7, 17, 18]), signers honestly execute the scheme
until they are compromised by the adversary. Verifiers may be untrusted.

The KGC executes LogFAS .Kg once offline before the deployment, and distributes
a distinct private key/token set (auxiliary signature) to each signer, and two long-term
public keys to all verifiers. After the deployment, a signer computes the forward-secure
and append-only signature of log entries with LogFAS .FASig , and verifiers can verify
the signature of any signer with LogFAS .FAVer via two public keys without commu-
nicating with KGC (constant storage overhead at the verifier side).

In LogFAS, the same logger computes the append-only signature of her own log
entries. Note that this form of signature computation is ideal for the envisioned secure
audit logging applications, since each logger is only responsible for her own log entries.

3.2 Security Model

A FSA scheme is proven to be ForWard-secure Existentially Unforgeable against Cho-
sen Message Attack (FWEU-CMA) based on the experiment defined in Definition 7. In
this experiment, A is provided with two types of oracles that she can query up to L
messages in total as follows:
A is first provided with a batch signing oracle FASigsk (·). For each batch query j,

A queries FASigsk (·) on a set of message
−→
D j of her choice once. FASigsk (·) re-

turns a forward-secure and append-only signature σ0,j under sk by aggregating σj

(i.e., the current append-only signature) on
−→
D j with the previous signature σ0,j−1 on

−→
D0, . . . ,

−→
D j−1 that A queried. Assume that A makes i batch queries (with 0 ≤ l ≤ L

individual messages) as described the above until she decides to “break-in”.
A then queries the Break -in oracle, which returns the remaining L− l private keys

to A (if l = L Break -in rejects the query).

Definition 7. FWEU-CMA experiment is defined as follows:
Experiment ExptFWEU -CMA

FSA (A)
(sk, PK)← FSA.Kg(1κ, L), (

−→
D∗, σ∗)← AFASigsk (·),Break-in(PK),

If FSA.FAVer(PK,
−→
D∗, σ∗) = 1 ∧ ∀I ⊆ {0, . . . , l},

−→
D∗ ̸= ||k∈I

−→
Dk, return 1, else,

return 0.
FWEU-CMA-advantage ofA is AdvFWEU -CMA

FSA (A) = Pr[ExptFWEU -CMA
FSA (A) = 1].

FWEU-CMA-advantage of FSA is AdvFWEU -CMA
FSA (t, L, µ) = maxA{AdvFWEU -CMA

FSA (A)},
where the maximum is over all A having time complexity t, making at most L oracle
queries, and the sum of lengths of these queries being at most µ bits.

The above experiment does not implement a random oracle for A explicitly. How-
ever, we still assume the Random Oracle Model (ROM) [4], since Schnorr signature
scheme [26] on which LogFAS is built requires the ROM. Note that this experiment
also captures the truncation attacks:

7

(i) The winning condition of A subsumes the truncation attack in addition to data
modification. That is, A wins the experiment when she either modifies a data item or
keeps data items intact but outputs a valid signature on a subset of a given batch query
(i.e., she splits an append-only signature without knowing its individual signatures).

(ii) LogFAS uses a standard signature scheme SGN to prevent truncation attacks by
computing signatures of counter values. Resilience against the traditional data forgery
(without truncation) relies on EU-CMA property of Schnorr and target collision-freeness
of IH. In Theorem 1, we prove that a successful truncation attack against LogFAS is
equivalent to breaking SGN , and a successful data modification (including re-ordering)
against LogFAS is equivalent to breaking Schnorr or IH.

4 LogFAS Schemes
In this section, we first present the intuition and detailed description of LogFAS, and
then describe a LogFAS variation that has additional capabilities.

4.1 LogFAS Scheme

All existing FSA constructions [17–20, 29] rely on a direct combination of an aggre-
gate signature (e.g., [8]) and a forward-secure signature (e.g., [1, 15]). Therefore, the
resulting constructions simultaneously inherit all overheads of their base primitives:
(i) Forward-secure signatures on individual data items, which are done separately from
the append-only design, force verifiers to perform O(l) ExpOps. (ii) These schemes ei-
ther eliminate ExpOps from the logging phase with pre-computation but incur quadratic
storage overhead to the verifiers (e.g., [29]), or require ExpOps in the logging phase for
each log entry and incur linear storage overhead to the verifiers (e.g., [12, 17, 20]).

The above observations inspired us to design cryptographic mechanisms that can
verify the integrity of entire log entry set once directly (preserving forward-security),
instead of checking the integrity of each data item individually, though the signing
operations have to be performed on individual data items. That is, instead of verifying
each item one-by-one with the corresponding public key(s), verify all of them via a
single set of aggregated cryptographic components (e.g., tokens as auxiliary signatures).
These mechanisms also achieve constant storage overhead at the verifier side3.

We achieve these goals with a provable security by using Schnorr signature and
incremental hash IH as follows:

a) To compute a forward-secure and append-only Schnorr signature, we aggregate
each individual signature sl on Dl with the previous aggregate signature as s0,l ←
s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0). This is done by using a distinct private
key pair (rj , yj) for j = 0, . . . , L− 1 on each data item.

b) Despite being forward-secure, the above construction still requires an ExpOp
for each data item. To verify the signature on D0, . . . , Dl with only a small-constant
number of ExpOps, we introduce the notion of token.

In LogFAS, each Schnorr private yj is comprised of a random key pair (aj , dj) for
j = 0, . . . , L − 1. Random key aj is mutually blinded with another random factor xj

and also a long-term private key b for j = 0, . . . , L − 1. The result of these blinding
3 In all existing forward-secure and/or aggregate (append-only) logging schemes (e.g., [7,12,17,19,20,29]), the signer side

storage overhead is dominated by the accumulated logs, which already incur a linear storage overhead.

8

operations is called auxiliary signature (token) zj , which can be kept publicly without
revealing information about (aj , xj) and also can be authenticated with the long-term
public key B by all verifiers. Furthermore, these masked tokens z = z0, . . . , zl also
serve as a one-time initialization key for the incremental hash as IHq,l

z (Definition 4),
which enable verifiers to reduce the integrity of each Dj into the integrity of a final tag
z0,l. This operation preserves the integrity of each Dj and verifiability of each zj (via
public key B) without ExpOps.

c) To verify (s0,l, z0,l) via B in an aggregate form, verifiers also aggregate tokens
Rj as R0,l ←

∏l
j=0 Rj mod p, where p a large prime on which the group was con-

structed. However, initially, (s0,l, R0,l, z0,l) cannot be verified directly via B, since the
reduction operations introduce some extra verification information. LogFAS handles
this via auxiliary signature (token) M ′

0,l that bridges (s0,l, R0,l, z0,l) to B. That is, the
signer computes an aggregate token M ′

0,l ←M ′
0,l−1M

ej
l mod p, where 0 < l ≤ L− 1

and M0,0 = M0), along with s0,l in the signing process. During verification, this ag-
gregate token eliminates the extra terms and bridges (s0,l, R0,l, z0,l) with B.

This approach allows LogFAS to compute publicly verifiable signatures with only
one ExpOp per-item, and this signature can be verified with only a small-constant num-
ber of ExpOps by storing only two public keys at the verifier side (regardless of the
number of signers). This is much more efficient than all of its PKC-based counterparts,
and also is as efficient as the symmetric schemes at the verifier side.

The detailed description of LogFAS algorithms is given below:
1) LogFAS .Kg(1κ, L): Given 1κ, generate primes q and p > q such that q|(p− 1), and
then generate a generator α of the subgroup G of order q in Z∗

p.

a) Generate (b
$← Z∗

q , B ← αb−1

mod p) and (ŝk , P̂K) ← SGN .Kg(1κ). System-
wide private key of KGC is sk ← (b, ŝk). This private key is used to compute the
private key of all signers in the system. System-wide public key of all verifiers is
PK ← {p, q, α,B, P̂K , L}. This public key can verify any valid signature gener-
ated by a legitimate signer.

b) Generate (rj , aj , dj , xj)
$← Z∗

q for j = 0, . . . , L− 1. The private key of signer IDi

is sk ← {rj , yj , zj ,Mj , Rj , βj}L−1
j=0 , where

- Generate the Schnorr private key of each IDi as yj ← aj − dj mod q. Generate
the masked token of IDi as zj ← (aj − xj)b mod q, which is used for integrity
reduction at the verification phase.

- Rj ← αrj mod p, Mj ← αxj−dj mod p. Each Rj serves as a part of Schnorr
signature and it is aggregated by the verifier upon its receipt. Mj is the aggregate
token and is aggregated by the signer during the logging process.

- βj ← SGN .Sig(ŝk ,H(IDi||j)). Note that each βj is kept secret initially, and
then released as a part of a signature publicly.

2) LogFAS .FASig(⟨rl, yl, zl,Ml, Rl, βl⟩, Dl, σ0,l−1): Given σ0,l−1 on D0, . . . , Dl−1,
compute σ0,l on D0, . . . , Dl as follows,

a) el ← H(Dl||l||zl||Rl), M ′
l ←Mel

l mod p, sl ← rl − elyl mod q,
b) s0,l ← s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0),

9

c) M ′
0,l ←M ′

0,l−1M
′
l mod p, (0 < l ≤ L− 1, M ′

0,0 = M0),

d) σ0,l ← {s0,l,M ′
0,l, βl, Rj , ej , zj}lj=0 and erase (rl, yl, s0,l−1, sl, βl−1).

3) LogFAS .FAVer(PK , ⟨D0, . . . , Dl⟩, σ0,l):

a) If SGN .Ver(P̂K,H(IDi||l), βl) = 0 then return 0, else continue,
b) If

∏l
j=0 Rj mod p = M ′

0,l ·Bz0,l · αs0,l mod p holds return 1, else return 0, where
z0,l = IHq,l

z0,...,zl
(D0||w||z0|| R0, . . . , Dl||w||zl||Rl).

4.2 Selective Verification with LogFAS

All the previous FSA constructions (e.g., [17–19, 29, 30]) verify the set of log entries
via only the final aggregate signature to prevent the truncation attack and save the stor-
age. However, this approach causes performance drawbacks: (i) The verification of any
subset of log entries requires the verification of the entire set of log entries (i.e., always
O(L) ExpOps for the subset verification). (ii) The failure of signature verification does
not give any information about which log entries were corrupted.

Ma et al. proposed immutable-FssAgg (iFssAgg) schemes in [20] to allow fine-
grained verification without being vulnerable to truncation attacks. However, iFssAgg
schemes double the signing/verifying costs of their base schemes. In addition, even if
the signature verification fails due to only a few corrupted log entries (i.e., accidentally
damaged entry(ies)), detecting which log entry(ies) is (are) responsible for the failure
requires verifying each individual signature.

LogFAS can address the above problems via a simple variation without incurring
any additional costs: The signer keeps all signatures and tokens in their individual forms
(including sj for j = 0, . . . , l) without aggregation. The verifiers can aggregate them
according to their needs by preserving the security and verifiability. This offers perfor-
mance advantages over iFssAgg schemes [20]:

(i) LogFAS protects the number of log entries via pre-computed tokens β0, . . . , βl,
and therefore individual signatures can be kept without a truncation risk. This elim-
inates the necessity of costly immutability strategies used in iFssAgg schemes [20].
Furthermore, a verifier can selectively aggregate any subset of l′ < l log entries and
verify them by performing only a small-constant number of ExpOps as in the original
LogFAS. This is much more efficient than the iFssAgg schemes, which require O(2l′)
ExpOps.

(ii) LogFAS can use a recursive subset search strategy to identify corrupted log en-
tries causing the verification failure faster than linear search4. That is, the set of log en-
tries is divided into subsets along with their corresponding individual signatures. Each
subset is then independently verified by LogFAS .AVer via its corresponding aggregate
signature, which is efficiently computed from individual signatures. Subsets returning
1 are eliminated from the search, while each subset returning 0 is again divided into
subsets and verified by LogFAS .AVer as described. This subset search continues re-
cursively until all the corrupted log entries are identified.

4 Note that the previous PKC-based audit logging schemes cannot use such a recursive subset search strategy to identify
corrupted log entries with a sub-linear number ExpOps, since they always require linear number of ExpOps to verify a
given subset from the entire log entry set (in contrast to LogFAS that requires O(1)ExpOp to verify a given subset).

10

The above strategy can quickly identify the corrupted entries when most log entries
are intact. For instance, if only one entry is corrupted, it can identify the corrupted entry
by performing (2 log2 l) ExpOps + O(l) hash operations. This is much faster than linear
search used in the previous PKC-based schemes, which always requires O(l) ExpOps
+ O(l) hash operations.

Recursive subset strategy remains more efficient than linear search as long as the
number of corrupted entries c satisfies c ≤ l

2 log2 l . When c > l
2 log2 l , depending on c

and the distribution of corrupted entries, recursive subset search might be more costly
than linear search. To minimize the performance loss in such an inefficient case, the
verifier can switch from recursive subset search to the linear search if the recursive
division and search step continuously returns 0 for each verified subset. The verifier
can ensure that the performance loss due to an inefficient case does not exceed the
average gain of an efficient case by setting the maximum number of recursive steps to
be executed to l′/2− log2 l

′ for each subset with l′ entries.

5 Security Analysis
We prove that LogFAS is a FWEU-CMA signature scheme in Theorem 1 below.

Theorem 1 AdvFWEU -CMA
LogFAS (t, L, µ) is bounded as follows,

AdvFWEU -CMA
LogFAS (t, L, µ) ≤ L ·AdvEU -CMA

Schnorr (t′, 1, µ′)+

AdvEU -CMA
SGN (t′′, L, µ′′) + AdvTCR

IHq,L
z

(t′′′),

where t′ = O(t) + L ·O(κ3) and µ′ = µ/L.

The proof of the theorem can be found in our accompanying technical report [31].

Remark 1 Another security concern in audit logging is delayed detection identified
in [19]. In delayed detection, log verifiers cannot detect whether the log entries are
modified until an online TTP provides auxiliary keying information to them. LogFAS
does not rely on an online TTP support or time factor to achieve the signature verifica-
tion, and therefore it is not prone to delayed detection.

6 Performance Analysis and Comparison

In this section, we present the performance analysis of LogFAS and compare it with
previous schemes.

Computational Overhead: From a verifier’s perspective, LogFAS requires only a
small-constant number of modular exponentiations regardless of the number of log en-
tries to be verified. Therefore, it is much more efficient than all PKC-based schemes,
which require one modular exponentiation (or a pairing) per log entry. Besides, it does
not double the verification cost to prevent the truncation attacks, providing further effi-
ciency over iFssAgg schemes [20]. The verification of subsets from these entries with
LogFAS is also much more efficient than all of its counterparts.

11

Table 2. Execution time (in ms) comparison of LogFAS and its counterparts

Criteria
PKC-based Sym.LogFAS FssAgg (l) / iFssAgg (l′) Logcrypt BAF

(l = 104, l′ < l) BLS / i BM / i AR / i

Off. Kg, L = 104 5.06 × 104 3.3 × 103 8.8 × 1041.7 × 1052.6 × 104 4 × 104 2̃0

Onl.

Sig&Upd (1) 1.2 1.8 / 3.6 13.1 / 26.2 28 / 56 2.05 0.007 0.004

Ver.
l′ = 102 72.87 4.8 × 103 1.8 × 1031.6 × 1051.4 × 103 0.2 × 103 0.2
l′ = 103 75.2 4.8 × 104 1 × 104 1.8 × 1051.5 × 1042.05 × 103 2
l = 104 98.12 2.6 × 105 4.7 × 1041.9 × 1051.4 × 1052.04 × 104 19.9

From a logger’s perspective, LogFAS is also more efficient than its PKC-based
counterparts with the exception of BAF.

We prototyped our schemes and their counterparts on a computer with an Intel(R)
Xeon(R)-E5450 3GHz CPU and 4GB RAM running Ubuntu 9.04. We tested LogFAS,
BAF [29], FssAgg-BLS [18], Logcrypt (with DSA), and the symmetric schemes (e.g.,
[7, 18, 25]) using the MIRACL library [27], and FssAgg-AR/BM using the NTL li-
brary [28] 5. Table 2 compares the computational cost of LogFAS with its counterparts
numerically in terms of their execution times (in ms). The execution time differences
with LogFAS and its PKC-based counterparts grow linearly with respect to the number
of log entries to be verified. Initially, the symmetric schemes are more efficient than all
PKC-based schemes, including ours. However, since the verification operations of Log-
FAS are dominated by H , their efficiency become comparable with symmetric schemes
as the number of log entries increases (e.g., l = 104)6.

Figure 1 and Figure 2 further compare LogFAS and previous schemes that allow
public verification in terms of signature generation and verification times as the number
of log entries increases. These figures demonstrate that LogFAS is the most verifier
computationally efficient scheme among all these choices. It is also more efficient than
its counterparts for the signature generation with the exception of BAF.

All PKC-based schemes require O(L) ExpOps in the key generation phase.
Signature/Key/Data Storage and Transmission Overheads:
LogFAS is a verifier storage friendly scheme; it requires each verifier to store only

two public keys and an index along with system-wide parameters (e.g., |q| + |4p|),
regardless of the number of signers or the number of log entries to be verified.

In LogFAS, the append-only signature size is |q|. The key/token and data storage
overheads on the logger side are linear as O(L(5|q|+2|p|))+O(l|D|) (assuming SGN
is chosen as Schnorr [26]). LogFAS transmits a token set along with each data item re-
quiring O(l(|q|+ |p|+ |D|)) transmission in total. The fine-grain verification introduces
O(l′) extra storage/communication overhead due to the individual signatures.

From a verifier’s perspective, LogFAS is much more storage efficient than all ex-
isting schemes, which require either O(L · S) storage (e.g., FssAgg-BLS [18] and
BAF [29]), or O(S) storage (e.g., [7,12,17,20,25]). From a logger’s perspective, all the

5 Suggested bit lengths to achieve 80-bit security for each compared schemes are as follows (based on the parameters
suggested by Lenstra et al. in [16] and Ma et al. in [17, 18]): Large primes (|p| = 2048, |q| = 1600) for LogFAS and
Logcrypt, primes (|p′| = 512, |q′| = 160) for BAF and FssAgg-BLS, (|n′| = 1024, z = 160) for FssAgg-AR and
FssAgg-BM, where n′ is Blum-Williams integer [17].

6 To achieve TCR property for IH, LogFAS uses relatively larger modulo sizes than its counterparts. However, since
LogFAS requires only a small-constant number of ExpOps for the signature verification and a single ExpOp for the
signature generation, the effect of large modulo size over its performance is negligible.

12

0 2000 4000 6000 8000 10000
10

−4

10
−2

10
0

10
2

10
4

10
6

Number of log entries to be signed (l)

E
xe

cu
tio

n
tim

e
(in

 m
s)

LogFAS
FssAgg−BLS
FssAgg−BM
FssAgg−AR
Logcrypt
BAF

Fig. 1. Signing time comparison of LogFAS and
its counterparts (in ms)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
2

10
4

10
6

10
8

Number of log entries to be verified (l)

E
xe

cu
tio

n
tim

e
(in

 m
s)

LogFAS
FssAgg−BLS
FssAgg−BM
FssAgg−AR
Logcrypt
BAF

Fig. 2. Verification time comparison of LogFAS
and its counterparts (in ms)

Table 3. Key size, signature size and storage overheads of LogFAS and previous schemes

Criteria
PKC-based Symmetric

LogFAS BAF FssAgg Schemes [19, 20] Logcrypt [12] Sym.
BLS [18] BM [17] AR [17] [18, 24, 25]

Sig.
Key size O(L)(|q| + |p|) 3|q′| |q′| |n′|z 3|n′| |q′| + |p′| |H|
Sig. size O(l)(|q| + |p|) |q′| |p′| |n′| |n′| 2|q′| |H|
Storage O(L + l)(|q| + |p|) 4|q′| 2|q′| + 3|p′| |n′|l 4|n′| O(L)(|q′| + |p′|)O(V)|H|

Ver. Key size |q| + 4|p| 2|p′| |q′| |n′|z 3|n′| 2|q′| + |p′| |H|
Storage |q| + 4|p| O(L · S)(2|p′|)O(L · S)|q′|O(S)|n′|zO(S)|3n′|O(L)(|q′| + |p′|)O(S)|H|

The values in this table are simplified by omitting some constant/neglibigle terms. For instance, the overhead of data items
to be transmitted are the same for all compared schemes and therefore are omitted.

compared schemes both accumulate (store) and transmit linear number of data items
(i.e., O(l)|D|) until their verifiers become available to them. This dominates the main
storage and communication overhead for these schemes. In addition to this, LogFAS
requires linear key storage overhead at the logger side, which is slightly less efficient
than [17, 18, 29]. LogFAS with fine-grained verification and its counterpart iFssAgg
schemes [20] both require linear key/signature/data storage/transmission overhead.

Availability, Applicability and Security: The symmetric schemes [7, 25] are not
publicly verifiable and also require online server support to verify log entries. Further-
more, they are vulnerable to both truncation and delayed detection attacks [19,20] with
the exception of FssAgg-MAC [18]. In contrast, PKC-based schemes [12, 17–20] are
publicly verifiable without requiring online server support, and they are secure against
the truncation and delayed detection attacks, with the exception of Logcrypt [12].

7 Related Work
Most closely related are those forward-secure audit logging schemes [6,7,12,17–20,25,
29]. The comparison of these schemes with LogFAS has been presented in Section 6.

Apart from the above schemes, there is a set of works complementary to ours.
Itkis [14] proposed cryptographic tamper resistance techniques that can detect tam-
pering even if all the keying material is compromised. LogFAS can be combined with
Itkis model as any forward-secure signature [14]. Yavuz et al. [30] proposed a Hash-
based Forward-Secure and Aggregate Signature Scheme (HaSAFSS) for unattended

13

wireless sensor networks, which uses timed-release encryption to achieve computa-
tional efficiency. Davis et al. proposed time-scoped search techniques on encrypted au-
dit logs [10]. There are also authenticated data structures that can be used for audit
logging in distributed systems [9,22]. LogFAS can serve as a digital signature primitive
needed by these constructions.

8 Conclusion
In this paper, we proposed a new forward-secure and append-only audit logging scheme
called LogFAS. LogFAS achieves public verifiability without requiring any online trusted
server support, and is secure against truncation and delayed detection attacks. LogFAS
is much more computationally efficient than all existing PKC-based alternatives, with a
performance comparable to symmetric schemes at the verifier side. LogFAS is also the
most verifier storage efficient scheme among all existing alternatives. Last, a variation
of LogFAS enables selective subset verification and efficient search of corrupted log
entries. Overall, our comparison with the existing schemes shows that LogFAS is an
ideal choice for secure audit logging by offering high efficiency, security, and public
verifiability simultaneously for real-life applications.

References

1. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. In Advances in
Crpytology (ASIACRYPT ’00), pages 116–129. Springer-Verlag, 2000.

2. R. Anderson. Two remarks on public-key cryptology, invited lecture. Proceedings of the 4th
ACM conference on Computer and Communications Security (CCS ’97), 1997.

3. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at
reduced cost. In Proc. of the 16th International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT ’97), pages 163–192. Springer-Verlag, 1997.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM conference on Computer and Communications
Security (CCS ’93), pages 62–73, NY, USA, 1993. ACM.

5. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs prac-
tical. In Proceedings of Advances in Cryptology (CRYPTO ’97), pages 470–484, London,
UK, 1997. Springer-Verlag.

6. M. Bellare and B. S. Yee. Forward integrity for secure audit logs. Technical report, San
Diego, CA, USA, 1997.

7. M. Bellare and B. S. Yee. Forward-security in private-key cryptography. In Proceedings of
the The Cryptographers Track at the RSA Conference (CT-RSA ’03), pages 1–18, 2003.

8. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In Proc. of the 22th International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT ’03), pages 416–432. Springer-
Verlag, 2003.

9. S. Crosby and D. S. Wallach. Efficient data structures for tamper evident logging. In Pro-
ceedings of the 18th conference on USENIX Security Symposium, August 2009.

10. D. Davis, F. Monrose, and M. Reiter. Time-scoped searching of encrypted audit logs. In Proc.
of the 6th International Conference on Information and Communications Security (ICICS
’04), pages 532–545, 2004.

11. K. Fall. A delay-tolerant network architecture for challenged internets. In Proceedings of
the 9th conference on Applications, technologies, architectures, and protocols for computer
communications, (SIGCOMM ’03), pages 27–34. ACM, 2003.

14

12. J. E. Holt. Logcrypt: Forward security and public verification for secure audit logs. In Proc.
of the 4th Australasian workshops on Grid computing and e-research (ACSW ’06), pages
203–211, 2006.

13. R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset
sum. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science,
pages 236–241, Washington, DC, USA, 1989. IEEE Computer Society.

14. G. Itkis. Cryptographic tamper evidence. In Proc. of the 10th ACM conference on Computer
and communications security (CCS ’03), pages 355–364, New York, NY, USA, 2003. ACM.

15. H. Krawczyk. Simple forward-secure signatures from any signature scheme. In Proceedings
of the 7th ACM conference on Computer and Communications Security, (CCS ’00), pages
108–115. ACM, 2000.

16. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,
14(4):255–293, 2001.

17. D. Ma. Practical forward secure sequential aggregate signatures. In Proceedings of the 3rd
ACM symposium on Information, Computer and Communications Security (ASIACCS ’08),
pages 341–352, NY, USA, 2008. ACM.

18. D. Ma and G. Tsudik. Forward-secure sequential aggregate authentication. In Proceedings
of the 28th IEEE Symposium on Security and Privacy (S&P ’07), pages 86–91, May 2007.

19. D. Ma and G. Tsudik. A new approach to secure logging. In Proc. of the 22nd Annual
IFIP WG 11.3 Working Conference on Data and Applications Security (DBSEC ’08), pages
48–63, 2008.

20. D. Ma and G. Tsudik. A new approach to secure logging. ACM Transaction on Storage
(TOS), 5(1):1–21, 2009.

21. A. Oprea and K. D. Bowers. Authentic time-stamps for archival storage. In 14th European
Symposium on Research in Computer Security, (ESORICS ’09), pages 136–151, Berlin, Hei-
delberg, 2009. Springer-Verlag.

22. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In Proc.
of the 15th ACM conference on Computer and Communications Security (CCS 2008), pages
437–448, New York, NY, USA, 2008. ACM.

23. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Proc. of the 15th
International Conference on the Theory and Application of Cryptographic Techniques (EU-
ROCRYPT ’96), pages 387–398. Springer-Verlag, 1996.

24. B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted machines. In
Proc. of the 7th conference on USENIX Security Symposium. USENIX Association, 1998.

25. B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACM Transaction
on Information System Security, 2(2):159–176, 1999.

26. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

27. Shamus. Multiprecision integer and rational arithmetic c/c++ library (MIRACL). http:
//www.shamus.ie/.

28. V. Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl/.
29. A. A. Yavuz and P. Ning. BAF: An efficient publicly verifiable secure audit logging scheme

for distributed systems. In Proceedings of 25th Annual Computer Security Applications
Conference (ACSAC ’09), pages 219–228, 2009.

30. A. A. Yavuz and P. Ning. Hash-based sequential aggregate and forward secure signature
for unattended wireless sensor networks. In Proceedings of the 6th Annual International
Conference on Mobile and Ubiquitous Systems (MobiQuitous ’09), July 2009.

31. A. A. Yavuz, P. Ning, and M. K. Reiter. Efficient, compromise resilient and append-only
cryptographic schemes for secure audit logging. Technical Report TR-2011-21, Raleigh,
NC, USA, September 2011.

15

