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Abstract. In this paper we are interested in privacy preserving discre-
tionary access control (DAC) for outsourced storage such as increasingly
popular cloud storage services. Our main goal is to enable clients, who
outsource data items, to delegate permissions (read, write, delete) to
other clients such that clients are able to unlinkably and anonymously
perform operations on outsourced data items when holding adequate per-
mission. In contrast to recent approaches based on oblivious RAM, obliv-
ious transfer combined with anonymous credentials or attribute based
encryption, we propose a solution based on dynamic accumulators. In
doing so, our approach naturally reflects the concept of access control
lists (ACLs), which are a popular means to implement DAC.

1 Introduction

Ensuring confidentiality, integrity and authenticity when outsourcing organiza-
tional data(bases) to untrusted third parties has been a research topic for many
years [7, 10, 12]. With the growing popularity of cloud computing, security in dis-
tributed access to data outsourced by “ordinary users” becomes also relevant.
This is underpinned by the fact that so called cloud storage services increasingly
gain in popularity. Besides confidentiality issues, i.e. for many types of data it
may be valuable that the cloud provider (CP) solely has access to encrypted data
but is still able to perform operations like searches on encrypted data [11], many
recent works focus on more subtle privacy issues, i.e. unlinkable and potentially
anonymous access to and operations on data stored in the cloud [3, 4, 9, 13, 14].

Some works [3, 4, 8] thereby focus on mandatory access control (MAC), i.e.
access control policies for stored data are specified by the cloud provider, and oth-
ers [9, 14] on discretionary access control (DAC). In the latter scenario, clients
can store data in the cloud and delegate access permissions to other clients -
thereby specifying access control on their own - without the CP being able to
determine who is sharing with whom, link operations (reads, writes) of clients
together and to identify the users. Nevertheless, the CP can be sure that access
control is enforced, i.e. clients need to have adequate permissions for the data.

Our contribution. In the DAC setting, the access control in a system is en-
forced by a trusted reference monitor. A commonly used approach is to employ



access control lists (ACLs), whereas every data item has its associated ACL
representing a list of users with their corresponding permissions which can be
modified dynamically. Thus, data owners can add or remove other users and their
permissions to or from an ACL. A user who wants to perform an operation on a
data item has to authenticate to the system and the reference monitor decides
(using the corresponding ACL) whether he is allowed to perform the operation.
It is straightforward to use pseudonyms in ACLs to hide the real identities of
users in this setting. However, all operations of a user within the system can be
linked to the user’s pseudonym and achieving unlinkability is not that straight-
forward. We solve this problem and basically our approach is to stick with ACLs,
but to “modify” ACLs in a way that the reference monitor 1) can still decide
if a user is allowed to perform the operation, 2) users can delegate/revoke ac-
cess rights to/from other users but 3) the reference monitor (CP) is not able to
identify users as well as link operations conducted by users together.

We provide two solutions to this problem. The first solutions has the draw-
back that convincing the “reference monitor” that a user holds the respective
permissions has proof complexity O(k), where k is the number of users. The
key idea is to have an ACL for every type of permission and the ACL con-
tains commitments to “pseudonyms”. A user essentially proves to the “reference
monitor” that he possesses one valid pseudonym in the ACL without reveal-
ing which one. The second approach reduces the proof complexity to O(1) and
uses a similar idea, whereas ACLs are represented by cryptographic accumula-
tors [1]. A cryptographic accumulator allows to represent a set by a single value
(the accumulator) whose size is independent of the size of the set. For every
accumulated value of this set one can compute a witness and having this wit-
ness one can prove in zero-knowledge that one holds a witness corresponding
to one accumulated value without revealing which one. Dynamic accumulators
[6] in addition allow an efficient update of an accumulator by adding elements
to (and possibly deleting elements from) it along with efficient update of the
remaining witnesses. In particular, our second construction relies on a dynamic
accumulator with efficient updates proposed by Camenisch et al. in [5], whereas
efficient updates mean that witnesses can be updated without the knowledge of
accumulator-related secret information by any party.

2 Related Work and Background

In this section we briefly present three different approaches bearing some sim-
ilarities with the one proposed in this paper, but employing entirely different
building blocks. Then, we present the concept of dynamic accumulators.

Anonymous credentials. Camenisch et al. [3, 4] use anonymous credentials
within oblivious transfer protocols to access items from a database at a server.
Thereby, the server defines the access control policies but neither learns which
items a user accesses nor which attributes or roles the user has. Still, he is able to
enforce access control. An approach supporting complex access control policies
such as the Brewer-Nash or the Bell-LaPadula model based on oblivious transfer



and so called stateful anonymous credentials is proposed in [8].

Oblivious RAM. In [9], Franz et al. present an oblivious RAM (ORAM) based
approach, which enables an owner of a database to outsource the database to an
untrusted storage service. Thereby, the data owner can delegate read and write
permissions to clients and clients can only perform operations on data items
when they possess appropriate permissions. A key feature of their so called del-
egated ORAM solution is that the storage service does not learn how often data
items are accessed by a user while access control is still enforced. Additionally,
their approach employs symmetric encryption to provide data confidentiality.
However, revocation of access rights is not explicitly realized. They propose to
encrypt data items with a fresh key and to use broadcast encryption to distribute
the key amongst all remaining authorized clients, which is rather involved.

Attribute based encryption. Very recently Zarandioon et al. [14] introduced
K2C, an approach for hierarchical (file system like) cryptographic cloud storage,
which can be implemented (like the approach presented here) on top of exist-
ing cloud services like Amazon S31. Here, clients can organize their encrypted
data items hierarchically at an untrusted storage provider and delegate read

and write permissions to other clients. The approach is based on key-policy
attribute based encryption (KP-ABE) and signatures from KP-ABE to provide
anonymous access. Although quite elegant, the revocation of permissions in this
approach, as above, requires re-encryption of data items w.r.t. updated policies
and distribution of respective keys to all remaining authorized clients.

Re-encryption (even when using lazy revocation on write accesses) is a cumber-
some task and we avoid this by guaranteeing that revoked clients will no longer
be able to even read data items, since they will not be able to successfully pass
the prove protocol with the “reference monitor” at the CP any longer.

Dynamic accumulator with efficient updates. In our construction we make
use of a dynamic accumulator with efficient updates introduced in [5]. Accumu-
latable values are in the set {1, . . . , n}, by V we denote the set of values contained
in the accumulator, Vw represents status information about the accumulator,
stateU are state information containing some parameters for the accumulator
and the set U represents all elements that were ever accumulated. We provide
an abstract definition below (see [5] for technical details):

AccGen(1k, n) generates an accumulator key pair (sk, pk), an initially empty
accumulator acc∅, which is capable of accumulating up to n values, and an
initial state state∅.

AccAdd(sk, i, accV , stateU ) adds value i to the accumulator accV and outputs a
new accumulator accV ∪{i}, a state stateU∪{i} and a witness witi for value i.

AccUpdate(pk, V, stateU ) outputs an accumulator accV for values V ⊂ U .
AccWitUpdate(pk,witi, Vw, accV , V, stateU ) outputs a witness wit′i for accV if

witi was a witness for accVw
and i ∈ V .

AccVerify(pk, i, witi, accV ) verifies whether i ∈ V using an actual witness witi
and accumulator accV . If this holds it outputs accept otherwise reject.

1 http://aws.amazon.com/s3/



Note that the AccVerify algorithm among other parameters gets (i, witi)
2 and

thus knows who “proves” that his corresponding value i was indeed accumulated.
Fortunately, dynamic accumulators are usually designed having in mind that
they should come along with efficient proofs to prove in zero-knowledge that a
value was accumulated without revealing the value itself.

ZKP of accumulated value. Camenisch et al. [5] provide an elegant and
efficient ZKP for accumulated values. Therefore, instead of signing the values
i using an arbitrary signature scheme, one uses a variant of the weakly secure
Boneh-Boyen signature scheme [2] (therefore the AccAdd algorithm has to be
modified accordingly [5]). This in combination with a randomization technique
allows a user to provide a proof of knowledge (PK) of a randomization value
that allows to de-randomize a commitment to value i such that i was signed
and i is accumulated in accV . The PK can be made non-interactive using the
Fiat-Shamir heuristic, whereas the corresponding signature of knowledge will
be denoted as spk. Thus, we can modify the AccVerify algorithm to take input
parameters (pk, spk, accV ) and this allows for verification without the necessity
of revealing the value i and the witness witi.

3 Implementing DAC with Unlinkable Access

In this section we present the model, a first (rather inefficient) construction and
a detailed description of our main construction. Then, we comment on some
aspects and briefly argue about the security.
Model. Let CP be a cloud provider who runs a cloud storage service, which
allows clients C = {c1, . . . , cn} to store (outsource), retrieve and manipulate
data. Clients access data via a very simple interface as it is quite common in
block oriented cloud storage services such as Amazon S3, i.e. storing key-value
pairs and supporting the operations insert, read, write and delete. Now, the
owner of a data item (the client who inserts the data into the cloud storage)
should be able to delegate the permissions read, write and delete (r,w and
d for short) for single data items to other clients and can also revoke all these
permissions whenever necessary.

One main design goal is, that the CP “enforces” the access control, i.e. only
allows an operation if the client is able to prove the possession of the respective
permission, but at the same time is not able to link different operations of the
clients together. Additionally, clients may also stay anonymous as we will discuss
later on and will be clear from our construction. We assume that a client can
establish a secure communication channel to an owner of data items and vice
versa (for instance by sharing encrypted messages via Amazon’s Simple Queue
Service). Furthermore, we assume the CP to represent an honest but curious
(passive) adversary and that the CP does not collude with clients.

A first approach. To provide a better understanding, we begin with a first ap-

2 When instantiating the accumulator scheme of [5] the values i are actually group
elements gi and can either be made public or the values gi||i are signed.



proach: Consider a data owner cm, who wants to insert a data item di at CP. He
generates a key pair (skdi

, pkdi
) of a signature scheme and chooses suitable ran-

dom values sm,i,r, rm,i,r, sm,i,w, rm,i,w and sm,i,d, rm,i,d for an unconditionally
hiding commitment scheme, i.e. Pedersen commitments. He computes the com-
mitments cm,i,r = C(sm,i,r, rm,i,r) as well as cm,i,w and cm,i,d and signs every
single commitment using skdi

. Then he sends di, the verification key pkdi
along

with the commitments and respective signatures to CP. CP checks whether the
single signatures are valid and creates three empty ACLs, ACLdi,r, ACLdi,w

and ACLdi,d for r, w and d permissions respectively and adds the commitments
to the corresponding ACLs.

If cm wants to delegate a permission to another client cj for data item di,
he simply chooses new random values sj,i,x, rj,i,x for permission x ∈ {r, w, d},
computes and signs the commitments and requests CP to add the commitments
to the respective ACLs (who accepts this if the signatures are valid). Then, he
gives (sj,i,x, rj,i,x) as well as the parameters for the commitment scheme to cj .

Assume a user wants to perform a r operation for data item di, then he
has to retrieve the respective ACL ACLdi,r (which we assume has k entries)
and perform an OR-composition of a ZKP of the opening of a commitment, i.e.
PK{(α, β) :

∨k
l=1(cl,i,x = C(α, β))}. This proof is an efficient OR-composition of

DL-representation proofs in case of Pedersen commitments, can easily be made
non-interactive and succeeds if cj knows at least one opening for a commitment
in ACLdi,r. If the verification of this proof succeeds, CP can allow the r op-
eration for data item di, but is not able to identify cj . Nor is CP able to link
different operations of cj together due to employing zero-knowledge OR-proofs.
Obviously, if there is only a single commitment in the ACL, then there will be no
unlinkability. However, it is straightforward for the data owner to initially insert
some dummy commitments into the ACLs, which will provide unlinkability - the
CP cannot distinguish between such dummies and real users.

In order to revoke permission x for dj for client cj , the data owner simply
provides the opening information of the commitment (sj,i,x, rj,i,x) along with
the signature for the respective commitment to the CP. Then, the CP computes
the commitment, checks the signature and if the verification holds removes the
commitment from ACLdi,x.

Our main construction. The above presented approach is very simple, but
has some drawbacks. Let k be the number of clients in an ACL, then 1) the
representation of every ACL has size O(k), 2) clients have to retrieve k commit-
ments prior to every operation and most importantly 3) the proof complexity
of client’s OR-proofs is O(k). In contrast, within the approach presented below
all these complexities are O(1) and thus independent of the number of clients.
Before going into details, we provide an abstract description of the operations.
The additional input paramsAcc will be discussed subsequently.

Store(idi, di): The owner of data item di identified by idi stores (idi, di) at CP.

Delegate(cj , idi, per, paramsAcc): Delegate permission per ∈ {r, w, d} for data
item identified by idi to client cj .



Revoke(cj , idi, per, paramsAcc): Revoke permission per ∈ {r, w, d} for data item
identified by idi for client cj .

Read(idi, paramsAcc): Read data item di identified by idi. If the client holds the
corresponding permission, di will be delivered, otherwise return ⊥.

Write(idi, d
′
i, paramsAcc): Modify data item di identified by idi to d′i. If the client

has the corresponding permission, d′i will be written, otherwise return ⊥.
Delete(idi, paramsAcc): Delete data item di identified by idi. If the client has the

corresponding permission, di will be deleted, otherwise return ⊥.

Below, we provide a more detailed description of the operations involved in our
construction and the meaning of the parameters paramsAcc:

Store. A data owner who wants to insert (idi, di) at the CP needs to specify
the maximum numbers of clients for every permission. Let us assume that he
sets this number for r, w and d to n. Then he runs AccGen(1k, n) three times
and obtains (skdi,x, pkdi,x, acc∅,di,x, state∅,di,x) for x ∈ {r, w, d} and adds him-
self (represented by value 1, the first accumulatable value) to all accumulators
by running AccAdd(skdi,x, 1, acc∅,di,x, state∅,di,x) and sends (idi, di) along with
(pkdi,x, acc{1},di,x, state{1},di,x) and bookkeeping information Vdi , Vw,di to the
CP. He stores skdi,x, the witnesses wit1,di,x and Vdi

, Vw,di
.

Delegate. A data owner who wants to delegate permission x ∈ {r, w, d} for data
item di to client cj proceeds as follows: He parses paramsAcc (which can be
retrieved from CP) as (pkdi,x, accV,di,x, stateU,di,x). Using stateU,di,x he deter-
mines a value z not already accumulated and obtains the updated accumulator
accV ∪{z},di,x, updated state information stateU∪{z},di,x and a witness witz,di,x

by running AccAdd(skdi,x, z, accV,di,x, stateU,di,x). The data owner securely com-
municates (z, witz,di,x) to client cj and stores the signature part of witz,di,x for
revocation purposes. Then, he sends (accV,di,x, stateU,di,x) along with updated
bookkeeping information to the CP.

Revoke. A data owner who wants to revoke permission x ∈ {r, w, d} for data
item di and client cj proceeds as follows: The data owner parses paramsAcc as
z, where z represents the value accumulated for cj in accV,di,x. Then he sends z
along with the signature for the corresponding witness to CP, who checks the sig-
nature. If the verification holds, CP runs AccUpdate(pkdi,x, V \ {z}, stateU,di,x)
and stores the resulting accumulator accV \{z},di,x, otherwise CP terminates.

Read/Write/Delete. A client who wants to perform operation x ∈ {r, w, d} for
data item di first parses paramsAcc as (pkdi,x, witdi,x, Vw, accV,di,x, V, stateU,di,x).
Then he has to check whether the accumulator accV,di,x has changed, i.e. a new
client was added or a client was revoked. If this is the case, the user has to
run AccWitUpdate(pkdi,x, witdi,x, Vw, accV,di,x, V, stateU,di,x) to compute the up-
dated witness wit′di,x

. Then, he uses the actual witness to compute a signature of
knowledge spk to prove that the value corresponding to the witness was accumu-
lated. He then sends spk to CP and the CP runs AccVerify(pkdi,x, spk, accV,di,x).
If it returns accept, then CP depending on the operation either delivers di to the
client (read), overwrites di with d′i provided by the client (write) or deletes di
along with corresponding accumulators and bookkeeping information (delete)



and terminates otherwise.

Remark. Delegate and Revoke operations need to be authorized, since otherwise
“ACLs” could be maliciously manipulated. We have omitted this above, but this
can be efficiently realized by signing the values sent to the CP at the end of the
two above mentioned operations. For the sake of convenience and efficiency, the
data owner can use the Boneh-Boyen signature scheme whose respective keys
are part of the private and public key of the accumulator respectively.

Confidentiality and integrity of stored data. When storing encrypted data,
all that data owners have to do is to additionally send the respective encryption
key along with the witness to the user. Note that we do not require re-encryption
(as in [9, 14]) since revoked users will no longer be able to access data items. To
provide integrity verification, one can store signatures or HMACs along with
data items and distribute the keys together with the witnesses to clients.

Security analysis. First, we consider security against malicious clients: All
clients other than the data owner do not know skdi,x. Thus they will not suc-
ceed in producing new witnesses, i.e. authorizing unauthorized clients, or trigger
unauthorized Delegate or Revoke operations to manipulate the accumulator. Con-
sequently, clients can only perform operations on data objects with permissions
they have been granted. Secondly, we consider security against a curious CP :
The CP does not learn the identities of clients (when they obtain a permission,
they are only identified by the value to be accumulated - which is unrelated to
their identity). Furthermore, due to employing ZKPs in the AccVerify protocol
to prove the possession of witnesses, the respective witnesses and corresponding
values are not disclosed. Consequently, clients conduct operations in an unlink-
able and anonymous fashion.

4 Extensions and Future Work

Hierarchical delegation. It may be desirable to augment simple DAC in a way
that clients who have obtained permissions for some data from a data owner are
able to delegate the obtained permissions for this data to further clients on their
own. But then, data owners very likely would like to recursively revoke granted
permission. For instance, if the data owner has provided permission x to client
ci and ci has granted permission x to cj , then revoking permission x for ci
should immediately imply revoking permission x for cj . This can be realized as
follows: If the data owner wants to allow further delegation for a specific data
item, permission x and client ci, he simply gives m witnesses to this client and
remembers the corresponding values and signatures. Client ci can then delegate
m − 1 permissions x to other clients (or give other clients more witnesses for
further delegation). If the data owner revokes the permission x for client ci, then
he simply “removes” all m witnesses from the respective accumulator.

Discretionary access control is an admittedly simple but often sufficient access
control model. Especially when outsourcing data to popular cloud storage ser-
vices, such an access control model is reasonable and can be deployed quite



easily. Due to increasing privacy demands, a mechanism - as the one proposed
in this paper - can be valuable. We envision this concept to be used with per-
sonal health record platforms such as Microsoft’s HealthVault. In such a scenario
highly sensitive medical data are stored (by patients) at cloud providers and
even observations about frequency of accesses or the fact that one data item is
accessed by multiple clients might leak sensitive and potentially compromising
information, e.g. several doctors and among these an oncologist is frequently
accessing data of user x. We leave the gathering of practical experiences when
deploying our construction in this scenario as important future work.
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